These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38386278)

  • 1. Atomic Defect Quantification by Lateral Force Microscopy.
    Yang Y; Xu K; Holtzman LN; Yang K; Watanabe K; Taniguchi T; Hone J; Barmak K; Rosenberger MR
    ACS Nano; 2024 Mar; 18(9):6887-6895. PubMed ID: 38386278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validating the Use of Conductive Atomic Force Microscopy for Defect Quantification in 2D Materials.
    Xu K; Holbrook M; Holtzman LN; Pasupathy AN; Barmak K; Hone JC; Rosenberger MR
    ACS Nano; 2023 Dec; 17(24):24743-24752. PubMed ID: 38095969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Atomic-Scale Imaging of Two-Dimensional Lattices Using Atomic Force Microscopy in Ambient Conditions.
    Kim S; Moon D; Jeon BR; Yeon J; Li X; Kim S
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating Edge Current in Hexagonal Boron Nitride via Doping and Friction.
    Das B; Maity S; Paul S; Dolui K; Paramanik S; Naskar S; Mohanty SR; Chakraborty S; Ghosh A; Palit M; Watanabe K; Taniguchi T; Menon KSR; Datta S
    ACS Nano; 2021 Dec; 15(12):20203-20213. PubMed ID: 34878256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy.
    Wong D; Velasco J; Ju L; Lee J; Kahn S; Tsai HZ; Germany C; Taniguchi T; Watanabe K; Zettl A; Wang F; Crommie MF
    Nat Nanotechnol; 2015 Nov; 10(11):949-53. PubMed ID: 26301901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating Water Slip Using Atomic-Scale Defects: Friction on Realistic Hexagonal Boron Nitride Surfaces.
    Seal A; Govind Rajan A
    Nano Lett; 2021 Oct; 21(19):8008-8016. PubMed ID: 34606287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic Defects in Two Dimensional Materials.
    Rasool HI; Ophus C; Zettl A
    Adv Mater; 2015 Oct; 27(38):5771-7. PubMed ID: 25946075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride.
    Sagar TC; Chinthapenta V
    J Mol Model; 2020 Jul; 26(8):192. PubMed ID: 32620980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Optically Active Defects in Hexagonal Boron Nitride Using Focused Ion Beam and Water.
    Glushkov E; Macha M; Räth E; Navikas V; Ronceray N; Cheon CY; Ahmed A; Avsar A; Watanabe K; Taniguchi T; Shorubalko I; Kis A; Fantner G; Radenovic A
    ACS Nano; 2022 Mar; 16(3):3695-3703. PubMed ID: 35254820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prototype cantilevers for quantitative lateral force microscopy.
    Reitsma MG; Gates RS; Friedman LH; Cook RF
    Rev Sci Instrum; 2011 Sep; 82(9):093706. PubMed ID: 21974593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Van der Waals Bound Organic/2D Insulator Hybrid Structures: Epitaxial Growth of Acene Films on
    Günder D; Watanabe K; Taniguchi T; Witte G
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38757-38767. PubMed ID: 32846485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides.
    Chow PK; Jacobs-Gedrim RB; Gao J; Lu TM; Yu B; Terrones H; Koratkar N
    ACS Nano; 2015 Feb; 9(2):1520-7. PubMed ID: 25603228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates.
    Zeng F; Wang R; Wei W; Feng Z; Guo Q; Ren Y; Cui G; Zou D; Zhang Z; Liu S; Liu K; Fu Y; Kou J; Wang L; Zhou X; Tang Z; Ding F; Yu D; Liu K; Xu X
    Nat Commun; 2023 Oct; 14(1):6421. PubMed ID: 37828069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive Atomic Force Microscopy of Semiconducting Transition Metal Dichalcogenides and Heterostructures.
    Giannazzo F; Schilirò E; Greco G; Roccaforte F
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32331313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities.
    Liang Q; Zhang Q; Zhao X; Liu M; Wee ATS
    ACS Nano; 2021 Feb; 15(2):2165-2181. PubMed ID: 33449623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Substitutional Point Defects in Two-Dimensional WS
    Schuler B; Lee JH; Kastl C; Cochrane KA; Chen CT; Refaely-Abramson S; Yuan S; van Veen E; Roldán R; Borys NJ; Koch RJ; Aloni S; Schwartzberg AM; Ogletree DF; Neaton JB; Weber-Bargioni A
    ACS Nano; 2019 Sep; 13(9):10520-10534. PubMed ID: 31393700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of intrinsic point defects and dimers in hexagonal boron nitride.
    Strand J; Larcher L; Shluger AL
    J Phys Condens Matter; 2020 Jan; 32(5):055706. PubMed ID: 31618727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Characterization of Discrete Defects and Impact of Defect Density on Photoluminescence in Monolayer WS
    Rosenberger MR; Chuang HJ; McCreary KM; Li CH; Jonker BT
    ACS Nano; 2018 Feb; 12(2):1793-1800. PubMed ID: 29320162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral force microscope calibration using a modified atomic force microscope cantilever.
    Reitsma MG
    Rev Sci Instrum; 2007 Oct; 78(10):106102. PubMed ID: 17979458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic studies of atomic defects and bandgap renormalization in semiconducting monolayer transition metal dichalcogenides.
    Jeong TY; Kim H; Choi SJ; Watanabe K; Taniguchi T; Yee KJ; Kim YS; Jung S
    Nat Commun; 2019 Aug; 10(1):3825. PubMed ID: 31444331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.