These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38386564)

  • 1. Novel correction procedure for compensating thermal contraction errors in the measurement of the magnetic field of superconducting undulator coils in a liquid helium cryostat.
    Marchetti B; Baader J; Casalbuoni S; Yakopov G; Yakopov M
    J Synchrotron Radiat; 2024 Mar; 31(Pt 2):282-294. PubMed ID: 38386564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and magnetic field measurement of a 0.5-m-long superconducting undulator at IHEP.
    Wei J; Li Y; Yang X; Chen Z; Zhang X; Bian X
    J Synchrotron Radiat; 2022 Jul; 29(Pt 4):997-1003. PubMed ID: 35787566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic characterization for cryogenic permanent-magnet undulators: a first result.
    Tanaka T; Tsuru R; Nakajima T; Kitamura H
    J Synchrotron Radiat; 2007 Sep; 14(Pt 5):416-20. PubMed ID: 17717383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refurbishment of a used in-vacuum undulator from the National Synchrotron Light Source for the National Synchrotron Light Source-II ring.
    Tanabe T; Bassan H; Broadbent A; Cappadoro P; Escallier J; Harder D; Hetzel C; Hidas D; Kitegi C; Kosciuk B; Musardo M; Kirkland J
    J Synchrotron Radiat; 2017 Sep; 24(Pt 5):919-924. PubMed ID: 28862613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light source based on a 100 mm-long monolithic undulator magnet with a very short 4 mm-period length.
    Yamamoto S; Kashiwagi S; Masuda S; Nakanii N; Hosokai T; Kando M; Muto T; Nanbu KI; Hinode F; Hama H
    J Synchrotron Radiat; 2019 Nov; 26(Pt 6):1902-1910. PubMed ID: 31721732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact undulator line for a high-brilliance soft-X-ray free-electron laser at MAX IV.
    Mak A; Salén P; Goryashko V
    J Synchrotron Radiat; 2019 May; 26(Pt 3):891-898. PubMed ID: 31074454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced X-ray free-electron laser performance with optical klystron and helical undulators.
    Kittel C; Calvi M; Reiche S; Sammut N; Wang G; Prat E
    J Synchrotron Radiat; 2024 Jul; 31(Pt 4):948-954. PubMed ID: 38861369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phasing multi-segment undulators.
    Chavanne J; Van Vaerenbergh P; Elleaume P
    J Synchrotron Radiat; 1996 May; 3(Pt 3):93-6. PubMed ID: 16702665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical spectral analysis of FEL radiation from multi-harmonic undulators.
    Zhukovsky K
    J Synchrotron Radiat; 2020 Nov; 27(Pt 6):1648-1661. PubMed ID: 33147191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the high energy engineering X-ray (HEX) superconducting wiggler, magnetic measurement, installation, and commissioning.
    Tanabe T; Corwin T; Hidas D; Musardo M; Migliorino D; Rank J; Seegitz M; Todd R; Hidaka Y; Hobl A; Grau A
    Rev Sci Instrum; 2023 Jun; 94(6):. PubMed ID: 37862506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First measurements with the K-monochromator at the European XFEL.
    Freund W; Fröhlich L; Karabekyan S; Koch A; Liu J; Nölle D; Wilgen J; Grünert J
    J Synchrotron Radiat; 2019 Jul; 26(Pt 4):1037-1044. PubMed ID: 31274425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vacuum undulators of SPring-8.
    Hara T; Tanaka T; Tanabe T; Maréchal XM; Okada S; Kitamura H
    J Synchrotron Radiat; 1998 May; 5(Pt 3):403-5. PubMed ID: 15263525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recondensation performance of liquid helium cryostat for a 28 GHz electron cyclotron resonance ion source.
    Choi S; Lee BS; Park JY; Ok JW; Shin CS; Yoon JH; Won MS; Kim BC
    Rev Sci Instrum; 2014 Feb; 85(2):02A915. PubMed ID: 24593494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical method using superposition of individual magnetic fields for initial arrangement of undulator magnets.
    Tsuchiya K; Shioya T
    Rev Sci Instrum; 2015 Apr; 86(4):043305. PubMed ID: 25933853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical spectral analysis of FEL radiation from multi-harmonic undulators. Corrigendum.
    Zhukovsky K
    J Synchrotron Radiat; 2021 Mar; 28(Pt 2):667-668. PubMed ID: 33650578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic assessment and modelling of the Aramis undulator beamline.
    Calvi M; Camenzuli C; Ganter R; Sammut N; Schmidt T
    J Synchrotron Radiat; 2018 May; 25(Pt 3):686-705. PubMed ID: 29714179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Radiation Resistance of Undulator Permanent Magnets by Tilting the Easy Axis of Magnetization.
    Bizen T; Kinjo R; Tanaka T
    Phys Rev Lett; 2018 Sep; 121(12):124801. PubMed ID: 30296109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent trends of insertion-device technology for X-ray sources.
    Kitamura H
    J Synchrotron Radiat; 2000 May; 7(Pt 3):121-30. PubMed ID: 16609185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conceptual design of the superconducting magnet for the 250 MeV proton cyclotron.
    Ren Y; Liu X; Gao X
    Springerplus; 2016; 5(1):673. PubMed ID: 27350910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable-period undulators as synchrotron radiation sources.
    Shenoy GK; Lewellen JW; Shu D; Vinokurov NA
    J Synchrotron Radiat; 2003 May; 10(Pt 3):205-13. PubMed ID: 12714749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.