BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3838666)

  • 1. Interactions of concanavalin A with a trimannosyl oligosaccharide fragment of complex and high mannose type glycopeptides.
    Brewer F; Bhattacharyya L; Brown RD; Koenig SH
    Biochem Biophys Res Commun; 1985 Mar; 127(3):1066-71. PubMed ID: 3838666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificity of concanavalin A binding to asparagine-linked glycopeptides. A nuclear magnetic relaxation dispersion study.
    Brewer CF; Bhattacharyya L
    J Biol Chem; 1986 Jun; 261(16):7306-10. PubMed ID: 3711088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concanavalin A interactions with asparagine-linked glycopeptides. Bivalency of high mannose and bisected hybrid type glycopeptides.
    Bhattacharyya L; Ceccarini C; Lorenzoni P; Brewer CF
    J Biol Chem; 1987 Jan; 262(3):1288-93. PubMed ID: 3805020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concanavalin A interactions with asparagine-linked glycopeptides. Bivalency of bisected complex type oligosaccharides.
    Bhattacharyya L; Haraldsson M; Brewer CF
    J Biol Chem; 1987 Jan; 262(3):1294-9. PubMed ID: 3805021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in the binding affinities of dimeric concanavalin A (including acetyl and succinyl derivatives) and tetrameric concanavalin A with large oligomannose-type glycopeptides.
    Mandal DK; Brewer CF
    Biochemistry; 1993 May; 32(19):5116-20. PubMed ID: 8494887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of concanavalin A with asparagine-linked glycopeptides. Structure/activity relationships of the binding and precipitation of oligomannose and bisected hybrid-type glycopeptides with concanavalin A.
    Bhattacharyya L; Brewer CF
    Eur J Biochem; 1989 Jan; 178(3):721-6. PubMed ID: 2912731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concanavalin A-binding glycopeptides from rat brain glycoproteins.
    Hof HI; Susz JP; Javaid JI; Brunngraber EG
    Neurobiology; 1975 Dec; 5(6):347-54. PubMed ID: 1690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lectin affinity chromatography of glycopeptides and oligosaccharides from normal and lectin-resistant Chinese-hamster ovary cells.
    Hunt LA
    Biochem J; 1982 Sep; 205(3):623-30. PubMed ID: 6890813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of homogeneous cross-linked lattices between oligomannose type glycopeptides and concanavalin A.
    Islam Khan M; Bhattacharyya L; Brewer CF
    Biochem Biophys Res Commun; 1988 May; 152(3):1076-82. PubMed ID: 3377767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic studies on the interaction of pradimicin BMY-28864 with mannose derivatives.
    Fujikawa K; Tsukamoto Y; Oki T; Lee YC
    Glycobiology; 1998 Apr; 8(4):407-14. PubMed ID: 9499388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precipitation of concanavalin A by a high mannose type glycopeptide.
    Bhattacharyya L; Brewer CF
    Biochem Biophys Res Commun; 1986 Jun; 137(2):670-4. PubMed ID: 3729933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of lectin-carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A.
    Mandal DK; Kishore N; Brewer CF
    Biochemistry; 1994 Feb; 33(5):1149-56. PubMed ID: 8110746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-ligand interaction. A calorimetric study of the interaction of oligosaccharides and hen ovalbumin glycopeptides with concanavalin A.
    Ambrosino R; Barone G; Castronuovo G; Ceccarini C; Cultrera O; Elia V
    Biochemistry; 1987 Jun; 26(13):3971-5. PubMed ID: 3651427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precipitation of the D-galactose specific lectin from Erythrina indica by a triantennary complex type oligosaccharide.
    Bhattacharyya L; Brewer CF
    Biochem Biophys Res Commun; 1986 Dec; 141(3):963-7. PubMed ID: 3814128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative recovery of Man9GlcNAc2Asn derivatives from concanavalin A.
    Deras IL; Kawasaki N; Lee YC
    Carbohydr Res; 1998 Feb; 306(4):469-71. PubMed ID: 9679271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of 4-methylumbelliferyl alpha-D-mannopyranoside to tetrameric and unmodified or derivatized dimeric concanavalin A: equilibrium studies.
    Loontiens FG; Clegg RM; Jovin TM
    Biochemistry; 1977 Jan; 16(2):159-66. PubMed ID: 836781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of oligomeric mannosides and their structure-binding relationship with concanavalin A.
    Li CW; Hon KW; Ghosh B; Li PH; Lin HY; Chan PH; Lin CH; Chen YC; Mong KK
    Chem Asian J; 2014 Jul; 9(7):1786-96. PubMed ID: 24799439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A monosaccharide-modified peptide phage library for screening of ligands to carbohydrate-binding proteins.
    Arai K; Tsutsumi H; Mihara H
    Bioorg Med Chem Lett; 2013 Sep; 23(17):4940-3. PubMed ID: 23871221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of concanavalin A with asparagine-linked glycopeptides: formation of homogeneous cross-linked lattices in mixed precipitation systems.
    Bhattacharyya L; Khan MI; Brewer CF
    Biochemistry; 1988 Nov; 27(24):8762-7. PubMed ID: 3242606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin.
    Yamamoto K; Tsuji T; Matsumoto I; Osawa T
    Biochemistry; 1981 Sep; 20(20):5894-9. PubMed ID: 6895318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.