BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38386671)

  • 1. A wall-time minimizing parallelization strategy for approximate Bayesian computation.
    Alamoudi E; Reck F; Bundgaard N; Graw F; Brusch L; Hasenauer J; Schälte Y
    PLoS One; 2024; 19(2):e0294015. PubMed ID: 38386671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. al3c: high-performance software for parameter inference using Approximate Bayesian Computation.
    Stram AH; Marjoram P; Chen GK
    Bioinformatics; 2015 Nov; 31(21):3549-51. PubMed ID: 26142186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pyABC: distributed, likelihood-free inference.
    Klinger E; Rickert D; Hasenauer J
    Bioinformatics; 2018 Oct; 34(20):3591-3593. PubMed ID: 29762723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel Markov chain Monte Carlo - bridging the gap to high-performance Bayesian computation in animal breeding and genetics.
    Wu XL; Sun C; Beissinger TM; Rosa GJ; Weigel KA; Gatti Nde L; Gianola D
    Genet Sel Evol; 2012 Sep; 44(1):29. PubMed ID: 23009363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automatic adaptive method to combine summary statistics in approximate Bayesian computation.
    Harrison JU; Baker RE
    PLoS One; 2020; 15(8):e0236954. PubMed ID: 32760106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian inference for fitting cardiac models to experiments: estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation.
    Nieto Ramos A; Fenton FH; Cherry EM
    Med Biol Eng Comput; 2023 Jan; 61(1):75-95. PubMed ID: 36322242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models.
    Daly AC; Cooper J; Gavaghan DJ; Holmes C
    J R Soc Interface; 2017 Sep; 14(134):. PubMed ID: 28931636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems.
    Toni T; Welch D; Strelkowa N; Ipsen A; Stumpf MP
    J R Soc Interface; 2009 Feb; 6(31):187-202. PubMed ID: 19205079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using approximate Bayesian computation.
    Carr MJ; Simpson MJ; Drovandi C
    J R Soc Interface; 2021 Sep; 18(182):20210362. PubMed ID: 34547212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Annealed Sequential Monte Carlo Method for Bayesian Phylogenetics.
    Wang L; Wang S; Bouchard-Côté A
    Syst Biol; 2020 Jan; 69(1):155-183. PubMed ID: 31173141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIV with contact tracing: a case study in approximate Bayesian computation.
    Blum MG; Tran VC
    Biostatistics; 2010 Oct; 11(4):644-60. PubMed ID: 20457785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks.
    Mariño IP; Zaikin A; Míguez J
    PLoS One; 2017; 12(8):e0182015. PubMed ID: 28797087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GpABC: a Julia package for approximate Bayesian computation with Gaussian process emulation.
    Tankhilevich E; Ish-Horowicz J; Hameed T; Roesch E; Kleijn I; Stumpf MPH; He F
    Bioinformatics; 2020 May; 36(10):3286-3287. PubMed ID: 32022854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximate Bayesian computation (ABC) gives exact results under the assumption of model error.
    Wilkinson RD
    Stat Appl Genet Mol Biol; 2013 May; 12(2):129-41. PubMed ID: 23652634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolic network of Clostridium acetobutylicum: Comparison of the approximate Bayesian computation via sequential Monte Carlo (ABC-SMC) and profile likelihood estimation (PLE) methods for determinability analysis.
    Thorn GJ; King JR
    Math Biosci; 2016 Jan; 271():62-79. PubMed ID: 26561777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallelization and High-Performance Computing Enables Automated Statistical Inference of Multi-scale Models.
    Jagiella N; Rickert D; Theis FJ; Hasenauer J
    Cell Syst; 2017 Feb; 4(2):194-206.e9. PubMed ID: 28089542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient exact inference for dynamical systems with noisy measurements using sequential approximate Bayesian computation.
    Schälte Y; Hasenauer J
    Bioinformatics; 2020 Jul; 36(Suppl_1):i551-i559. PubMed ID: 32657404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating Contact Network Uncertainty in Individual Level Models of Infectious Disease using Approximate Bayesian Computation.
    Almutiry W; Deardon R
    Int J Biostat; 2019 Dec; 16(1):. PubMed ID: 31812945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian parameter estimation for the Wnt pathway: an infinite mixture models approach.
    Koutroumpas K; Ballarini P; Votsi I; Cournède PH
    Bioinformatics; 2016 Sep; 32(17):i781-i789. PubMed ID: 27587701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Likelihood free inference for Markov processes: a comparison.
    Owen J; Wilkinson DJ; Gillespie CS
    Stat Appl Genet Mol Biol; 2015 Apr; 14(2):189-209. PubMed ID: 25720092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.