BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38386683)

  • 1. Retraction: Tidal Stretches Differently Regulate the Contractile and Cytoskeletal Elements in Intact Airways.
    PLOS ONE Editors
    PLoS One; 2024; 19(2):e0299553. PubMed ID: 38386683
    [No Abstract]   [Full Text] [Related]  

  • 2. Tidal stretches differently regulate the contractile and cytoskeletal elements in intact airways.
    Bartolák-Suki E; LaPrad AS; Harvey BC; Suki B; Lutchen KR
    PLoS One; 2014; 9(4):e94828. PubMed ID: 24740101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airway smooth muscle, tidal stretches, and dynamically determined contractile states.
    Fredberg JJ; Inouye D; Miller B; Nathan M; Jafari S; Raboudi SH; Butler JP; Shore SA
    Am J Respir Crit Care Med; 1997 Dec; 156(6):1752-9. PubMed ID: 9412551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tidal stretches do not modulate responsiveness of intact airways in vitro.
    LaPrad AS; Szabo TL; Suki B; Lutchen KR
    J Appl Physiol (1985); 2010 Aug; 109(2):295-304. PubMed ID: 20431023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calpain cleavage of focal adhesion proteins regulates the cytoskeletal attachment of integrin alphaIIbbeta3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin clots.
    Schoenwaelder SM; Yuan Y; Cooray P; Salem HH; Jackson SP
    J Biol Chem; 1997 Jan; 272(3):1694-702. PubMed ID: 8999848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cytoskeletal and contractile apparatus of smooth muscle: contraction bands and segmentation of the contractile elements.
    Draeger A; Amos WB; Ikebe M; Small JV
    J Cell Biol; 1990 Dec; 111(6 Pt 1):2463-73. PubMed ID: 2277068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine kinases regulate the cytoskeletal attachment of integrin alpha IIb beta 3 (platelet glycoprotein IIb/IIIa) and the cellular retraction of fibrin polymers.
    Schoenwaelder SM; Jackson SP; Yuan Y; Teasdale MS; Salem HH; Mitchell CA
    J Biol Chem; 1994 Dec; 269(51):32479-87. PubMed ID: 7798249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Contractile properties of smooth muscles of bronchial tubes at formation of hyperreactance of airways].
    Kapilevich LV; D'iakova EIu; Ogorodova LM; Zaĭtseva TN; Nosarev AV; Sazonov AE
    Ross Fiziol Zh Im I M Sechenova; 2005 Jul; 91(7):832-43. PubMed ID: 16206627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A maturational model for the study of airway smooth muscle adaptation to mechanical oscillation.
    Wang L; Chitano P; Murphy TM
    Can J Physiol Pharmacol; 2005 Oct; 83(10):817-24. PubMed ID: 16333352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length oscillation mimicking periodic individual deep inspirations during tidal breathing attenuates force recovery and adaptation in airway smooth muscle.
    Raqeeb A; Solomon D; Paré PD; Seow CY
    J Appl Physiol (1985); 2010 Nov; 109(5):1476-82. PubMed ID: 20829495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?
    Harvey BC; Parameswaran H; Lutchen KR
    J Appl Physiol (1985); 2015 Jul; 119(1):47-54. PubMed ID: 25953836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways.
    Brook BS
    J Appl Physiol (1985); 2014 Apr; 116(8):980-97. PubMed ID: 24481961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation of activated airway smooth muscle: relative potency of isoproterenol vs. tidal stretch.
    Gump A; Haughney L; Fredberg J
    J Appl Physiol (1985); 2001 Jun; 90(6):2306-10. PubMed ID: 11356796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient stretch induces cytoskeletal fluidization through the severing action of cofilin.
    Lan B; Krishnan R; Park CY; Watanabe RA; Panganiban R; Butler JP; Lu Q; Cole WC; Fredberg JJ
    Am J Physiol Lung Cell Mol Physiol; 2018 May; 314(5):L799-L807. PubMed ID: 29345194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inflammation Drives Retraction, Stiffening, and Nodule Formation via Cytoskeletal Machinery in a Three-Dimensional Culture Model of Aortic Stenosis.
    Lim J; Ehsanipour A; Hsu JJ; Lu J; Pedego T; Wu A; Walthers CM; Demer LL; Seidlits SK; Tintut Y
    Am J Pathol; 2016 Sep; 186(9):2378-89. PubMed ID: 27392969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force generation by cytoskeletal motor proteins as a regulator of axonal elongation and retraction.
    Baas PW; Ahmad FJ
    Trends Cell Biol; 2001 Jun; 11(6):244-9. PubMed ID: 11356360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maintenance of airway caliber in isolated airways by deep inspiration and tidal strains.
    LaPrad AS; West AR; Noble PB; Lutchen KR; Mitchell HW
    J Appl Physiol (1985); 2008 Aug; 105(2):479-85. PubMed ID: 18556436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Airway smooth muscle contractile, regulatory and cytoskeletal protein expression in health and disease.
    Stephens NL; Halayko AJ
    Comp Biochem Physiol B Biochem Mol Biol; 1998 Mar; 119(3):415-24. PubMed ID: 9734326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lipoxygenase metabolite, 12(S)-HETE, induces a protein kinase C-dependent cytoskeletal rearrangement and retraction of microvascular endothelial cells.
    Tang DG; Timar J; Grossi IM; Renaud C; Kimler VA; Diglio CA; Taylor JD; Honn KV
    Exp Cell Res; 1993 Aug; 207(2):361-75. PubMed ID: 7688315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium transients induce spatially coordinated increases in traction force during the movement of fish keratocytes.
    Doyle A; Marganski W; Lee J
    J Cell Sci; 2004 May; 117(Pt 11):2203-14. PubMed ID: 15126622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.