BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 38387080)

  • 1. A CAG repeat threshold for therapeutics targeting somatic instability in Huntington's disease.
    Aldous SG; Smith EJ; Landles C; Osborne GF; Cañibano-Pico M; Nita IM; Phillips J; Zhang Y; Jin B; Hirst MB; Benn CL; Bond BC; Edelmann W; Greene JR; Bates GP
    Brain; 2024 May; 147(5):1784-1798. PubMed ID: 38387080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice.
    Tomé S; Manley K; Simard JP; Clark GW; Slean MM; Swami M; Shelbourne PF; Tillier ER; Monckton DG; Messer A; Pearson CE
    PLoS Genet; 2013; 9(2):e1003280. PubMed ID: 23468640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington's disease.
    O'Reilly D; Belgrad J; Ferguson C; Summers A; Sapp E; McHugh C; Mathews E; Boudi A; Buchwald J; Ly S; Moreno D; Furgal R; Luu E; Kennedy Z; Hariharan V; Monopoli K; Yang XW; Carroll J; DiFiglia M; Aronin N; Khvorova A
    Mol Ther; 2023 Jun; 31(6):1661-1674. PubMed ID: 37177784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes.
    Dragileva E; Hendricks A; Teed A; Gillis T; Lopez ET; Friedberg EC; Kucherlapati R; Edelmann W; Lunetta KL; MacDonald ME; Wheeler VC
    Neurobiol Dis; 2009 Jan; 33(1):37-47. PubMed ID: 18930147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies.
    Wright GEB; Black HF; Collins JA; Gall-Duncan T; Caron NS; Pearson CE; Hayden MR
    Lancet Neurol; 2020 Nov; 19(11):930-939. PubMed ID: 33098802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.
    Pinto RM; Dragileva E; Kirby A; Lloret A; Lopez E; St Claire J; Panigrahi GB; Hou C; Holloway K; Gillis T; Guide JR; Cohen PE; Li GM; Pearson CE; Daly MJ; Wheeler VC
    PLoS Genet; 2013 Oct; 9(10):e1003930. PubMed ID: 24204323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.
    Kovalenko M; Dragileva E; St Claire J; Gillis T; Guide JR; New J; Dong H; Kucherlapati R; Kucherlapati MH; Ehrlich ME; Lee JM; Wheeler VC
    PLoS One; 2012; 7(9):e44273. PubMed ID: 22970194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington's disease knock-in mice is blocked by Mlh1 knock-out.
    Loupe JM; Pinto RM; Kim KH; Gillis T; Mysore JS; Andrew MA; Kovalenko M; Murtha R; Seong I; Gusella JF; Kwak S; Howland D; Lee R; Lee JM; Wheeler VC; MacDonald ME
    Hum Mol Genet; 2020 Nov; 29(18):3044-3053. PubMed ID: 32876667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease.
    Goold R; Hamilton J; Menneteau T; Flower M; Bunting EL; Aldous SG; Porro A; Vicente JR; Allen ND; Wilkinson H; Bates GP; Sartori AA; Thalassinos K; Balmus G; Tabrizi SJ
    Cell Rep; 2021 Aug; 36(9):109649. PubMed ID: 34469738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular Localization And Formation Of Huntingtin Aggregates Correlates With Symptom Onset And Progression In A Huntington'S Disease Model.
    Landles C; Milton RE; Ali N; Flomen R; Flower M; Schindler F; Gomez-Paredes C; Bondulich MK; Osborne GF; Goodwin D; Salsbury G; Benn CL; Sathasivam K; Smith EJ; Tabrizi SJ; Wanker EE; Bates GP
    Brain Commun; 2020; 2(2):fcaa066. PubMed ID: 32954323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic background modifies nuclear mutant huntingtin accumulation and HD CAG repeat instability in Huntington's disease knock-in mice.
    Lloret A; Dragileva E; Teed A; Espinola J; Fossale E; Gillis T; Lopez E; Myers RH; MacDonald ME; Wheeler VC
    Hum Mol Genet; 2006 Jun; 15(12):2015-24. PubMed ID: 16687439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uninterrupted CAG repeat drives striatum-selective transcriptionopathy and nuclear pathogenesis in human Huntingtin BAC mice.
    Gu X; Richman J; Langfelder P; Wang N; Zhang S; Bañez-Coronel M; Wang HB; Yang L; Ramanathan L; Deng L; Park CS; Choi CR; Cantle JP; Gao F; Gray M; Coppola G; Bates GP; Ranum LPW; Horvath S; Colwell CS; Yang XW
    Neuron; 2022 Apr; 110(7):1173-1192.e7. PubMed ID: 35114102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modifiers of Somatic Repeat Instability in Mouse Models of Friedreich Ataxia and the Fragile X-Related Disorders: Implications for the Mechanism of Somatic Expansion in Huntington's Disease.
    Zhao X; Kumari D; Miller CJ; Kim GY; Hayward B; Vitalo AG; Pinto RM; Usdin K
    J Huntingtons Dis; 2021; 10(1):149-163. PubMed ID: 33579860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for Assessing DNA Repair and Repeat Expansion in Huntington's Disease.
    Massey T; McAllister B; Jones L
    Methods Mol Biol; 2018; 1780():483-495. PubMed ID: 29856032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of age-dependent somatic CAG repeat instability in Hdh CAG knock-in mice reveals different expansion dynamics in striatum and liver.
    Lee JM; Pinto RM; Gillis T; St Claire JC; Wheeler VC
    PLoS One; 2011; 6(8):e23647. PubMed ID: 21897851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic validation of MMR-associated genetic modifiers in a human ex vivo model of Huntington disease.
    Ferguson R; Goold R; Coupland L; Flower M; Tabrizi SJ
    Am J Hum Genet; 2024 Jun; 111(6):1165-1183. PubMed ID: 38749429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of TDP-43 promotes somatic CAG repeat expansion in Huntington's disease knock-in mice.
    Bai D; Zhu L; Jia Q; Duan X; Chen L; Wang X; Hou J; Jiang G; Yang S; Li S; Li XJ; Yin P
    Prog Neurobiol; 2023 Aug; 227():102484. PubMed ID: 37315918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA repair in the trinucleotide repeat disorders.
    Jones L; Houlden H; Tabrizi SJ
    Lancet Neurol; 2017 Jan; 16(1):88-96. PubMed ID: 27979358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease.
    Choi DE; Shin JW; Zeng S; Hong EP; Jang JH; Loupe JM; Wheeler VC; Stutzman HE; Kleinstiver B; Lee JM
    Elife; 2024 Jun; 12():. PubMed ID: 38869243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse.
    Wheeler VC; Auerbach W; White JK; Srinidhi J; Auerbach A; Ryan A; Duyao MP; Vrbanac V; Weaver M; Gusella JF; Joyner AL; MacDonald ME
    Hum Mol Genet; 1999 Jan; 8(1):115-22. PubMed ID: 9887339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.