BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38387156)

  • 1. Viral clearance capability of monoclonal antibody purification.
    Cai K; Anderson J; Utiger E; Ferreira G
    Biologicals; 2024 Feb; 85():101751. PubMed ID: 38387156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a modular virus clearance package for anion exchange chromatography operated in weak partitioning mode.
    Iskra T; Sacramo A; Gallo C; Godavarti R; Chen S; Lute S; Brorson K
    Biotechnol Prog; 2015; 31(3):750-7. PubMed ID: 25826186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the 2019 Viral Clearance Symposium, Session 2: New Modalities in Chromatography and Adsorptive Filters.
    Specht R; Schwantes A
    PDA J Pharm Sci Technol; 2022; 76(4):306-314. PubMed ID: 34911828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel approach to achieving modular retrovirus clearance for a parvovirus filter.
    Stuckey J; Strauss D; Venkiteshwaran A; Gao J; Luo W; Quertinmont M; O'Donnell S; Chen D
    Biotechnol Prog; 2014; 30(1):79-85. PubMed ID: 24123923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of MMV as a Single Worst-Case Model Virus in Viral Filter Validation Studies.
    Gefroh E; Dehghani H; McClure M; Connell-Crowley L; Vedantham G
    PDA J Pharm Sci Technol; 2014; 68(3):297-311. PubMed ID: 25188350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the viral clearance ability of continuous monoclonal antibody purification steps, in order to inactivate and/or remove four model viruses.
    Rasouli-Nejad Mousavi SM; Hosseini SM; Ansari S
    Iran J Microbiol; 2023 Oct; 15(5):711-722. PubMed ID: 37941874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Use of Bayesian Hierarchical Logistic Regression in the Development of a Modular Viral Inactivation Claim.
    Banton D; Vacante D; Bulthuis B; Goldstein J; Wineburg M; Schreffler J
    PDA J Pharm Sci Technol; 2019; 73(6):552-561. PubMed ID: 31101710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retrospective Evaluation of Cycled Resin in Viral Clearance Studies-A Multiple Company Collaboration.
    Mattila J; Curtis S; Webb-Vargas Y; Wilson E; Galperina O; Roush D; Tobler S; Stanley B; Clark M; Weaver J; Pike J; Yu D; Li X; Flicker A; Kindermann J; Schuelke N; Whitcombe R; Bennett L
    PDA J Pharm Sci Technol; 2019; 73(5):470-486. PubMed ID: 31101706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quality by design approach for viral clearance by protein a chromatography.
    Zhang M; Miesegaes GR; Lee M; Coleman D; Yang B; Trexler-Schmidt M; Norling L; Lester P; Brorson KA; Chen Q
    Biotechnol Bioeng; 2014 Jan; 111(1):95-103. PubMed ID: 23860745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the 2019 Viral Clearance Symposium, Session 1: Viral Clearance Strategies and Case Studies.
    Reitz S; Schwantes A
    PDA J Pharm Sci Technol; 2022; 76(4):297-305. PubMed ID: 34911829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving a Successful Scale-Down Model and Optimized Economics through Parvovirus Filter Validation using Purified TrueSpikeTM Viruses.
    De Vilmorin P; Slocum A; Jaber T; Schaefer O; Ruppach H; Genest P
    PDA J Pharm Sci Technol; 2015; 69(3):440-9. PubMed ID: 26048749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of viral clearance unit operations for monoclonal antibodies.
    Miesegaes G; Lute S; Brorson K
    Biotechnol Bioeng; 2010 Jun; 106(2):238-46. PubMed ID: 20073086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viral removal by column chromatography in downstream processing of monoclonal antibodies.
    Li Y
    Protein Expr Purif; 2022 Oct; 198():106131. PubMed ID: 35700957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of ionic strength for X-MuLV inactivation by low pH treatment for monoclonal antibody purification.
    Daya J; Cusick V; Mattila J
    Biotechnol Bioeng; 2023 Jun; 120(6):1605-1613. PubMed ID: 36924035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the impact of pressure on virus filtration processes and establishing design spaces to ensure effective parvovirus removal.
    Strauss D; Goldstein J; Hongo-Hirasaki T; Yokoyama Y; Hirotomi N; Miyabayashi T; Vacante D
    Biotechnol Prog; 2017 Sep; 33(5):1294-1302. PubMed ID: 28556575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.
    Roush DJ; Myrold A; Burnham MS; And JV; Hughes JV
    Biotechnol Prog; 2015; 31(1):135-44. PubMed ID: 25395156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suitability of a generic virus safety evaluation for monoclonal antibody investigational new drug applications.
    Sipple P; Nguyen T; Patel K; Jaffe N; Chen Y; Khetan A
    Biotechnol Prog; 2019 Sep; 35(5):e2850. PubMed ID: 31125511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viral clearance in end-to-end integrated continuous process for mAb purification: Total flow-through integrated polishing on two columns connected to virus filtration.
    Shirataki H; Matsumoto Y; Konoike F; Yamamoto S
    Biotechnol Bioeng; 2023 Oct; 120(10):2977-2988. PubMed ID: 37288613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of viruses from human intravenous immune globulin by 35 nm nanofiltration.
    Troccoli NM; McIver J; Losikoff A; Poiley J
    Biologicals; 1998 Dec; 26(4):321-9. PubMed ID: 10403036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings of the 2019 Viral Clearance Symposium, Session 4: Viral Clearance Strategy and Process Understanding.
    Roush D; Blümel J
    PDA J Pharm Sci Technol; 2022; 76(4):323-338. PubMed ID: 34911824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.