These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 38387158)
1. Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies. Hou X; Lin L; Li K; Jiang F; Qiao D; Zhang B; Xie F Adv Colloid Interface Sci; 2024 Mar; 325():103113. PubMed ID: 38387158 [TBL] [Abstract][Full Text] [Related]
2. Gelling and bile acid binding properties of gelatin-alginate gels with interpenetrating polymer networks by double cross-linking. Niu Y; Xia Q; Li N; Wang Z; Lucy Yu L Food Chem; 2019 Jan; 270():223-228. PubMed ID: 30174038 [TBL] [Abstract][Full Text] [Related]
3. Semi-IPN- and IPN-Based Hydrogels. Zoratto N; Matricardi P Adv Exp Med Biol; 2018; 1059():155-188. PubMed ID: 29736573 [TBL] [Abstract][Full Text] [Related]
4. An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting. Chen Q; Tian X; Fan J; Tong H; Ao Q; Wang X Molecules; 2020 Feb; 25(3):. PubMed ID: 32050529 [TBL] [Abstract][Full Text] [Related]
5. Assessing the compressive elasticity and multi-responsive property of gelatin-containing weakly anionic copolymer gels Ciftbudak S; Orakdogen N Soft Matter; 2022 Sep; 18(37):7181-7200. PubMed ID: 36098207 [TBL] [Abstract][Full Text] [Related]
7. Interpenetrating network hydrogels with high strength and transparency for potential use as external dressings. Wang J; Wei J Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():460-467. PubMed ID: 28866188 [TBL] [Abstract][Full Text] [Related]
8. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Wu J; Xue W; Yun Z; Liu Q; Sun X Mater Today Bio; 2024 Apr; 25():100998. PubMed ID: 38390342 [TBL] [Abstract][Full Text] [Related]
9. Composite hydrogels assembled from food-grade biopolymers: Fabrication, properties, and applications. McClements DJ Adv Colloid Interface Sci; 2024 Oct; 332():103278. PubMed ID: 39153416 [TBL] [Abstract][Full Text] [Related]
10. Interpenetrating and semi-interpenetrating network superabsorbent hydrogels based on sodium alginate and cellulose nanocrystals: A biodegradable and high-performance solution for adult incontinence pads. Ismaeilimoghadam S; Jonoobi M; Ashori A; Shahraki A; Azimi B; Danti S Int J Biol Macromol; 2023 Dec; 253(Pt 8):127118. PubMed ID: 37802434 [TBL] [Abstract][Full Text] [Related]
13. Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release. Ghosh SK; Das A; Basu A; Halder A; Das S; Basu S; Abdullah MF; Mukherjee A; Kundu S Int J Biol Macromol; 2018 Dec; 120(Pt B):1823-1833. PubMed ID: 30287366 [TBL] [Abstract][Full Text] [Related]
14. Characterization of structural and functional properties of soy protein isolate and sodium alginate interpenetrating polymer network hydrogels. Yang Y; Zhang C; Bian X; Ren LK; Ma CM; Xu Y; Su D; Ai LZ; Song MF; Zhang N J Sci Food Agric; 2023 Oct; 103(13):6566-6573. PubMed ID: 37229570 [TBL] [Abstract][Full Text] [Related]
15. Property modulation of the alginate-based hydrogel via semi-interpenetrating polymer network (semi-IPN) with poly(vinyl alcohol). Kim YJ; Min J Int J Biol Macromol; 2021 Dec; 193(Pt B):1068-1077. PubMed ID: 34798186 [TBL] [Abstract][Full Text] [Related]
16. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210 [TBL] [Abstract][Full Text] [Related]
18. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Said NS; Olawuyi IF; Lee WY Gels; 2023 Sep; 9(9):. PubMed ID: 37754413 [TBL] [Abstract][Full Text] [Related]
19. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. Cui C; Fu Q; Meng L; Hao S; Dai R; Yang J ACS Appl Bio Mater; 2021 Jan; 4(1):85-121. PubMed ID: 35014278 [TBL] [Abstract][Full Text] [Related]
20. In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells. Abandansari HS; Ghanian MH; Varzideh F; Mahmoudi E; Rajabi S; Taheri P; Nabid MR; Baharvand H Biomaterials; 2018 Jul; 170():12-25. PubMed ID: 29635108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]