These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38387348)
1. Twelve-year conversion of rice paddy to wetland does not alter SOC content but decreases C decomposition and N mineralization in Japan. Tang S; Liu T; Hu R; Xu X; Wu Y; Meng L; Hattori S; Tawaraya K; Cheng W J Environ Manage; 2024 Mar; 354():120319. PubMed ID: 38387348 [TBL] [Abstract][Full Text] [Related]
2. Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan. Tang S; Cheng W; Hu R; Guigue J; Hattori S; Tawaraya K; Tokida T; Fukuoka M; Yoshimoto M; Sakai H; Usui Y; Xu X; Hasegawa T Sci Total Environ; 2021 Feb; 756():143845. PubMed ID: 33277011 [TBL] [Abstract][Full Text] [Related]
3. [Effect of reclamation on the vertical distribution of SOC and retention of DOC]. Huo LL; Zou YC; Guo JW; Lü XG Huan Jing Ke Xue; 2013 Jan; 34(1):283-7. PubMed ID: 23487952 [TBL] [Abstract][Full Text] [Related]
4. [Response of Organic Carbon Mineralization to Nitrogen Addition in Micro-aerobic and Anaerobic Layers of Paddy Soil]. Mao WQ; Xia YH; Ma C; Zhu GX; Wang ZC; Tu Q; Chen XB; Wu JS; Su YR Huan Jing Ke Xue; 2023 Nov; 44(11):6248-6256. PubMed ID: 37973107 [TBL] [Abstract][Full Text] [Related]
5. [Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Drvland Origins in Karst Cave Wetland]. Jin ZJ; Zeng HH; Li Q; Cheng YP; Tang HF; Li M; Huang BF Huan Jing Ke Xue; 2016 Jan; 37(1):335-41. PubMed ID: 27078975 [TBL] [Abstract][Full Text] [Related]
6. [Effects of Reclamation on Soil Nutrients and Microbial Activities in the Huixian Karst Wetland in Guilin]. Huang KC; Shen YY; Xu GP; Huang YQ; Zhang DN; Sun YJ; Li YQ; He W; Zhou LW Huan Jing Ke Xue; 2018 Apr; 39(4):1813-1823. PubMed ID: 29965008 [TBL] [Abstract][Full Text] [Related]
7. Conversion of drylands to paddy fields on former wetlands restores soil organic carbon by accumulating labile carbon fractions in the Sanjiang Plain, northeast China. Chen HM; Shi FX; Wang XW; Zhang XH; Mao R J Sci Food Agric; 2023 Jan; 103(2):599-605. PubMed ID: 36468612 [TBL] [Abstract][Full Text] [Related]
8. [Responses of soil organic carbon content and fractions to land-use conversion from paddy field to upland]. Huang S; Rui WY; Peng XX; Liu WR; Zhang WJ Huan Jing Ke Xue; 2009 Apr; 30(4):1146-51. PubMed ID: 19545021 [TBL] [Abstract][Full Text] [Related]
9. Elevated CO2 facilitates C and N accumulation in a rice paddy ecosystem. Guo J; Zhang M; Wang X; Zhang W J Environ Sci (China); 2015 Mar; 29():27-33. PubMed ID: 25766010 [TBL] [Abstract][Full Text] [Related]
10. Effects of contrasting tillage managements on the vertical distribution of plant- and microbial-derived carbon in rice paddy. Qi JY; Yao XB; Duan MY; Huang XW; Fan MY; Yang Y; Luo HW; Tang XR Sci Total Environ; 2023 Sep; 892():164348. PubMed ID: 37236452 [TBL] [Abstract][Full Text] [Related]
11. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils. Song XY; Spaccini R; Pan G; Piccolo A Sci Total Environ; 2013 Aug; 458-460():319-30. PubMed ID: 23669578 [TBL] [Abstract][Full Text] [Related]
12. Effects of nitrogen-enriched biochar on subtropical paddy soil organic carbon pool dynamics. Liu X; Wang W; Peñuelas J; Sardans J; Chen X; Fang Y; Alrefaei AF; Zeng F; Tariq A Sci Total Environ; 2022 Dec; 851(Pt 2):158322. PubMed ID: 36037888 [TBL] [Abstract][Full Text] [Related]
13. Effects of tillage management on soil carbon decomposition and its relationship with soil chemistry properties in rice paddy fields. Qi JY; Jing ZH; He C; Liu QY; Wang X; Kan ZR; Zhao X; Xiao XP; Zhang HL J Environ Manage; 2021 Feb; 279():111595. PubMed ID: 33168304 [TBL] [Abstract][Full Text] [Related]
14. Conversion effects of farmland to Zanthoxylum bungeanum plantations on soil organic carbon mineralization in the arid valley of the upper reaches of Yangtze River, China. Lv C; Saba T; Wang J; Hui W; Liu W; Fan J; Wu J; Liu X; Gong W PLoS One; 2022; 17(2):e0262961. PubMed ID: 35120155 [TBL] [Abstract][Full Text] [Related]
15. Effects of migratory birds activities on the stoichiometry of soil carbon, nitrogen and phosphorus in a Yao B; Zou SZ; Liang JF; Ye JF; Xu CY; Wang XQ; Ren Q; Hu QW Ying Yong Sheng Tai Xue Bao; 2024 Jul; 35(7):1988-1996. PubMed ID: 39233429 [TBL] [Abstract][Full Text] [Related]
16. [Comparison of Soil Bacterial Community Structure Between Paddy Fields and Dry Land in the Huixian Karst Wetland, China]. Jia YH; Jin ZJ; Yuan W; Cheng YY; Qiu JM; Liang JT; Pan FJ; Liu DS Huan Jing Ke Xue; 2019 Jul; 40(7):3313-3323. PubMed ID: 31854733 [TBL] [Abstract][Full Text] [Related]
17. Impact of deforestation and temporal land-use change on soil organic carbon storage, quality, and lability. Amoakwah E; Lucas ST; Didenko NA; Rahman MA; Islam KR PLoS One; 2022; 17(8):e0263205. PubMed ID: 35947542 [TBL] [Abstract][Full Text] [Related]
18. Changes in soil organic carbon and total nitrogen in croplands converted to walnut-based agroforestry systems and orchards in southeastern Loess Plateau of China. Lu S; Meng P; Zhang J; Yin C; Sun S Environ Monit Assess; 2015 Nov; 187(11):688. PubMed ID: 26468039 [TBL] [Abstract][Full Text] [Related]
19. Effects of long-term fertilizer practices on rhizosphere soil nitrogen mineralization in the double-cropping rice field. Lihong S; Haiming T; Li W; Geng S; Kaikai C; Mei S; Weiyan L; Yong G J Basic Microbiol; 2023 Jul; 63(7):781-789. PubMed ID: 36782076 [TBL] [Abstract][Full Text] [Related]
20. Cropping systems affect paddy soil organic carbon and total nitrogen stocks (in rice-garlic and rice-fava systems) in temperate region of southern China. Zhang T; Chen A; Liu J; Liu H; Lei B; Zhai L; Zhang D; Wang H Sci Total Environ; 2017 Dec; 609():1640-1649. PubMed ID: 28810521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]