BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38387384)

  • 1. Comparative study of respiratory sounds classification methods based on cepstral analysis and artificial neural networks.
    Semmad A; Bahoura M
    Comput Biol Med; 2024 Mar; 171():108190. PubMed ID: 38387384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of wheeze sounds using cepstral analysis and neural networks.
    Hashemi A; Arabalibeik H; Agin K
    Stud Health Technol Inform; 2012; 173():161-5. PubMed ID: 22356979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Neural Network-Based Respiratory Pathology Classification Using Cough Sounds.
    Balamurali BT; Hee HI; Kapoor S; Teoh OH; Teng SS; Lee KP; Herremans D; Chen JM
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A temporal dependency feature in lower dimension for lung sound signal classification.
    Kwon AM; Kang K
    Sci Rep; 2022 May; 12(1):7889. PubMed ID: 35551232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes.
    Bahoura M
    Comput Biol Med; 2009 Sep; 39(9):824-43. PubMed ID: 19631934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory sounds classification using cepstral analysis and Gaussian mixture models.
    Bahoura M; Pelletier C
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():9-12. PubMed ID: 17271590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Lung Health Screening Using Respiratory Sounds.
    Mukherjee H; Sreerama P; Dhar A; Obaidullah SM; Roy K; Mahmud M; Santosh KC
    J Med Syst; 2021 Jan; 45(2):19. PubMed ID: 33426615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of COVID-19 in smartphone-based breathing recordings: A pre-screening deep learning tool.
    Alkhodari M; Khandoker AH
    PLoS One; 2022; 17(1):e0262448. PubMed ID: 35025945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heart sound classification based on equal scale frequency cepstral coefficients and deep learning.
    Chen X; Li H; Huang Y; Han W; Yu X; Zhang P; Tao R
    Biomed Tech (Berl); 2023 Jun; 68(3):285-295. PubMed ID: 36780471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Heart sound classification based on improved mel frequency cepstrum coefficient and integrated decision network method].
    Wang Y; Sun J; Yang H; Guo T; Pan J; Wang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1140-1148. PubMed ID: 36575083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Sneaky algorithm-based deep neural networks for Heart sound classification using phonocardiogram.
    Shastri RK; Shastri AR; Nitnaware PP; Padulkar DM
    Network; 2024 Feb; 35(1):1-26. PubMed ID: 38018148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children].
    Yan WY; Li L; Yang YG; Lin XL; Wu JZ
    Zhonghua Er Ke Za Zhi; 2016 Aug; 54(8):605-9. PubMed ID: 27510874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H; Yuan X; Li J; Pei Z; Zheng X
    Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A heart sound classification method based on joint decision of extreme gradient boosting and deep neural network].
    Wang Z; Jin Y; Zhao L; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Feb; 38(1):10-20. PubMed ID: 33899423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks.
    Deng M; Meng T; Cao J; Wang S; Zhang J; Fan H
    Neural Netw; 2020 Oct; 130():22-32. PubMed ID: 32589588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using CCA-Fused Cepstral Features in a Deep Learning-Based Cry Diagnostic System for Detecting an Ensemble of Pathologies in Newborns.
    Khalilzad Z; Tadj C
    Diagnostics (Basel); 2023 Feb; 13(5):. PubMed ID: 36900023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Underwater Acoustic Target Recognition Method Based on Restricted Boltzmann Machine.
    Luo X; Feng Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32967172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. COVID-19 disease diagnosis with light-weight CNN using modified MFCC and enhanced GFCC from human respiratory sounds.
    Kranthi Kumar L; Alphonse PJA
    Eur Phys J Spec Top; 2022; 231(18-20):3329-3346. PubMed ID: 35096278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic heart sound classification from segmented/unsegmented phonocardiogram signals using time and frequency features.
    Khan FA; Abid A; Khan MS
    Physiol Meas; 2020 Jun; 41(5):055006. PubMed ID: 32259811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.