BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38387384)

  • 21. Data Collection, Modeling, and Classification for Gunshot and Gunshot-like Audio Events: A Case Study.
    Baliram Singh R; Zhuang H; Pawani JK
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an Electronic Stethoscope and a Classification Algorithm for Cardiopulmonary Sounds.
    Wu YC; Han CC; Chang CS; Chang FL; Chen SF; Shieh TY; Chen HM; Lin JY
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classification of crispness of food materials by deep neural networks.
    Lopes RZ; Dacanal GC
    J Texture Stud; 2023 Dec; 54(6):845-859. PubMed ID: 37527808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and development of hybrid optimization enabled deep learning model for COVID-19 detection with comparative analysis with DCNN, BIAT-GRU, XGBoost.
    Dar JA; Srivastava KK; Ahmed Lone S
    Comput Biol Med; 2022 Nov; 150():106123. PubMed ID: 36228465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wheeze detection using cepstral analysis in Gaussian Mixture Models.
    Chien JC; Wu HD; Chong FC; Li CI
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3168-71. PubMed ID: 18002668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of Mel-Frequency Cepstrum for Wheeze Analysis.
    Pramono RXA; Imtiaz SA; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4686-4689. PubMed ID: 31946908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid Sneaky algorithm-based deep neural networks for Heart sound classification using phonocardiogram.
    Shastri RK; Shastri AR; Nitnaware PP; Padulkar DM
    Network; 2024 Feb; 35(1):1-26. PubMed ID: 38018148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic Assessment of Aphasic Speech Sensed by Audio Sensors for Classification into Aphasia Severity Levels to Recommend Speech Therapies.
    Herath HMDPM; Weraniyagoda WASA; Rajapaksha RTM; Wijesekara PADSN; Sudheera KLK; Chong PHJ
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification.
    Saldanha J; Chakraborty S; Patil S; Kotecha K; Kumar S; Nayyar A
    PLoS One; 2022; 17(8):e0266467. PubMed ID: 35960763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feature Extraction Methods Proposed for Speech Recognition Are Effective on Road Condition Monitoring Using Smartphone Inertial Sensors.
    Cabral FS; Fukai H; Tamura S
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31395828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Signal Duration on the Classification of Heart Sounds: A Deep Learning Approach.
    Bao X; Xu Y; Kamavuako EN
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvise approach for respiratory pathologies classification with multilayer convolutional neural networks.
    Borwankar S; Verma JP; Jain R; Nayyar A
    Multimed Tools Appl; 2022; 81(27):39185-39205. PubMed ID: 35505670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Learning Methods for Underwater Target Feature Extraction and Recognition.
    Hu G; Wang K; Peng Y; Qiu M; Shi J; Liu L
    Comput Intell Neurosci; 2018; 2018():1214301. PubMed ID: 29780407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classifying Heart Sounds Using Images of Motifs, MFCC and Temporal Features.
    Nogueira DM; Ferreira CA; Gomes EF; Jorge AM
    J Med Syst; 2019 May; 43(6):168. PubMed ID: 31056720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diagnosis of cardiac abnormalities based on phonocardiogram using a novel fuzzy matching feature extraction method.
    Yang W; Xu J; Xiang J; Yan Z; Zhou H; Wen B; Kong H; Zhu R; Li W
    BMC Med Inform Decis Mak; 2022 Sep; 22(1):230. PubMed ID: 36056352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unraveling the complexities of pathological voice through saliency analysis.
    Shaikh AAS; Bhargavi MS; Naik GR
    Comput Biol Med; 2023 Nov; 166():107566. PubMed ID: 37857135
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic COVID-19 disease diagnosis using 1D convolutional neural network and augmentation with human respiratory sound based on parameters: cough, breath, and voice.
    Lella KK; Pja A
    AIMS Public Health; 2021; 8(2):240-264. PubMed ID: 34017889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IoT-Enabled WBAN and Machine Learning for Speech Emotion Recognition in Patients.
    Olatinwo DD; Abu-Mahfouz A; Hancke G; Myburgh H
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.