These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 38387401)
1. Effect of N-o-nitrobenzylation on conformation and membrane permeability of linear peptides. Huang Z; Ishii M; Watanabe E; Kanamitsu K; Tai K; Kusuhara H; Ohwada T; Otani Y Bioorg Chem; 2024 Apr; 145():107220. PubMed ID: 38387401 [TBL] [Abstract][Full Text] [Related]
2. Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles. Ghasemy S; García-Pindado J; Aboutalebi F; Dormiani K; Teixidó M; Malakoutikhah M Bioorg Med Chem; 2018 May; 26(8):2099-2106. PubMed ID: 29567297 [TBL] [Abstract][Full Text] [Related]
3. Relationships between structure and high-throughput screening permeability of peptide derivatives and related compounds with artificial membranes: application to prediction of Caco-2 cell permeability. Ano R; Kimura Y; Shima M; Matsuno R; Ueno T; Akamatsu M Bioorg Med Chem; 2004 Jan; 12(1):257-64. PubMed ID: 14697791 [TBL] [Abstract][Full Text] [Related]
4. Toward an optimal blood-brain barrier shuttle by synthesis and evaluation of peptide libraries. Malakoutikhah M; Teixidó M; Giralt E J Med Chem; 2008 Aug; 51(16):4881-9. PubMed ID: 18666771 [TBL] [Abstract][Full Text] [Related]
5. cis-Peptide Bonds: A Key for Intestinal Permeability of Peptides? . Marelli UK; Ovadia O; Frank AO; Chatterjee J; Gilon C; Hoffman A; Kessler H Chemistry; 2015 Oct; 21(43):15148-52. PubMed ID: 26337831 [TBL] [Abstract][Full Text] [Related]
8. An Otani Y; Ichinose A; Wang X; Huang Z; Kasahara A; Ishii M; Watanabe E; Kanamitsu K; Tai K; Kusuhara H; Ueda T; Takeuchi K; Ohwada T Chem Commun (Camb); 2024 Aug; 60(69):9242-9245. PubMed ID: 39115107 [TBL] [Abstract][Full Text] [Related]
9. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides. Rezai T; Bock JE; Zhou MV; Kalyanaraman C; Lokey RS; Jacobson MP J Am Chem Soc; 2006 Nov; 128(43):14073-80. PubMed ID: 17061890 [TBL] [Abstract][Full Text] [Related]
10. Enantiomeric cyclic peptides with different Caco-2 permeability suggest carrier-mediated transport. Marelli UK; Bezençon J; Puig E; Ernst B; Kessler H Chemistry; 2015 May; 21(22):8023-7. PubMed ID: 25917866 [TBL] [Abstract][Full Text] [Related]
11. Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation. Tan X; Liu Q; Fang Y; Zhu Y; Chen F; Zeng W; Ouyang D; Dong J Mol Pharm; 2024 Aug; 21(8):4116-4127. PubMed ID: 39031123 [TBL] [Abstract][Full Text] [Related]
12. Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique. Bujard A; Sol M; Carrupt PA; Martel S Eur J Pharm Sci; 2014 Oct; 63():36-44. PubMed ID: 25008117 [TBL] [Abstract][Full Text] [Related]
13. A parallel permeability assay of peptides across artificial membranes and cell monolayers using a fluorogenic reaction. Morimoto J; Amano R; Ono T; Sando S Org Biomol Chem; 2019 Mar; 17(11):2887-2891. PubMed ID: 30810151 [TBL] [Abstract][Full Text] [Related]
14. Highly Conformationally Restricted Cyclopropane Tethers with Three-Dimensional Structural Diversity Drastically Enhance the Cell Permeability of Cyclic Peptides. Matsui K; Kido Y; Watari R; Kashima Y; Yoshida Y; Shuto S Chemistry; 2017 Mar; 23(13):3034-3041. PubMed ID: 27878880 [TBL] [Abstract][Full Text] [Related]
15. Structure-Permeability Relationship of Semipeptidic Macrocycles-Understanding and Optimizing Passive Permeability and Efflux Ratio. Le Roux A; Blaise É; Boudreault PL; Comeau C; Doucet A; Giarrusso M; Collin MP; Neubauer T; Kölling F; Göller AH; Seep L; Tshitenge DT; Wittwer M; Kullmann M; Hillisch A; Mittendorf J; Marsault E J Med Chem; 2020 Jul; 63(13):6774-6783. PubMed ID: 32453569 [TBL] [Abstract][Full Text] [Related]
18. Prediction of the Passive Intestinal Absorption of Medicinal Plant Extract Constituents with the Parallel Artificial Membrane Permeability Assay (PAMPA). Petit C; Bujard A; Skalicka-Woźniak K; Cretton S; Houriet J; Christen P; Carrupt PA; Wolfender JL Planta Med; 2016 Mar; 82(5):424-31. PubMed ID: 26872320 [TBL] [Abstract][Full Text] [Related]
19. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability. Fujikawa M; Ano R; Nakao K; Shimizu R; Akamatsu M Bioorg Med Chem; 2005 Aug; 13(15):4721-32. PubMed ID: 15936203 [TBL] [Abstract][Full Text] [Related]
20. Lipid composition effect on permeability across PAMPA. Seo PR; Teksin ZS; Kao JP; Polli JE Eur J Pharm Sci; 2006 Nov; 29(3-4):259-68. PubMed ID: 16781125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]