These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38387492)

  • 21. Scoping candidate minerals for stabilization of arsenic-bearing solid residuals.
    Raghav M; Shan J; Sáez AE; Ela WP
    J Hazard Mater; 2013 Dec; 263 Pt 2(0 2):525-32. PubMed ID: 24231323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrothermal treatment of arsenic sulfide slag to immobilize arsenic into scorodite and recycle sulfur.
    Zhang W; Lu H; Liu F; Wang C; Zhang Z; Zhang J
    J Hazard Mater; 2021 Mar; 406():124735. PubMed ID: 33296758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of precursor speciation on the growth of scorodite in an atmospheric scorodite synthesis.
    Rong Z; Tang X; Wu L; Chen X; Dang W; Li X; Huang L; Wang Y
    R Soc Open Sci; 2020 Jan; 7(1):191619. PubMed ID: 32218981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of copper on the precipitation of scorodite (FeAsO4·2H2O) under hydrothermal conditions: evidence for a hydrated copper containing ferric arsenate sulfate-short lived intermediate.
    Gomez MA; Becze L; Celikin M; Demopoulos GP
    J Colloid Interface Sci; 2011 Aug; 360(2):508-18. PubMed ID: 21621789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution.
    Jia Y; Zhang D; Pan R; Xu L; Demopoulos GP
    Water Res; 2012 Feb; 46(2):500-8. PubMed ID: 22142599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic removal from acidic solutions with biogenic ferric precipitates.
    Ahoranta SH; Kokko ME; Papirio S; Özkaya B; Puhakka JA
    J Hazard Mater; 2016 Apr; 306():124-132. PubMed ID: 26705889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Processes of attenuation of dissolved arsenic downstream from historic gold mine sites, New Zealand.
    Haffert L; Craw D
    Sci Total Environ; 2008 Nov; 405(1-3):286-300. PubMed ID: 18691740
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO
    Ma X; Zhang J; Gomez MA; Ding Y; Yao S; Lv H; Wang X; Wang S; Jia Y
    Sci Total Environ; 2021 Dec; 799():149474. PubMed ID: 34426338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous bioscorodite crystallization in CSTRs for arsenic removal and disposal.
    González-Contreras P; Weijma J; Buisman CJ
    Water Res; 2012 Nov; 46(18):5883-92. PubMed ID: 22960037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of primary precipitate composition formed during co-removal of Cr(VI) with Cu(II) in synthetic wastewater.
    Sun JM; Zhu WT; Huang JC
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):379-85. PubMed ID: 17120827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic studies of adsorption and ion exchange of Si(OH)
    Chen M; Guo W; Hu X; Tian J
    J Mol Graph Model; 2024 Jul; 130():108779. PubMed ID: 38657395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep-dive into iron-based co-precipitation of arsenic: A review of mechanisms derived from synchrotron techniques and implications for groundwater treatment.
    Ahmad A; van Genuchten CM
    Water Res; 2024 Feb; 249():120970. PubMed ID: 38064786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterizing and quantilying controls on arsenic solubility over a pH range of 1-11 in a uranium mill-scale experiment.
    Moldovan BI; Hendry MJ
    Environ Sci Technol; 2005 Jul; 39(13):4913-20. PubMed ID: 16053092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Schupp D; Jun YS
    Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic and kinetic studies of As(V) removal from water by zirconium oxide-coated marine sand.
    Khan TA; Chaudhry SA; Ali I
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5425-40. PubMed ID: 23423866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum.
    Sun X; Mao M; Lu K; Hu Q; Liu W; Lin Z
    J Hazard Mater; 2022 Feb; 424(Pt C):127585. PubMed ID: 34753651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural attenuation of arsenic by sediment sorption and oxidation.
    Choi S; O'Day PA; Hering JG
    Environ Sci Technol; 2009 Jun; 43(12):4253-9. PubMed ID: 19603631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local Structure and Crystallization Transformation of Hydrous Ferric Arsenate in Acidic H
    Ma X; Yuan Z; Lin J; Cui Y; Wang S; Pan Y; Chernikov R; Long Cheung LK; Deevsalar R; Jia Y
    Environ Sci Technol; 2024 Apr; 58(16):7176-7185. PubMed ID: 38606801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spread and partitioning of arsenic in soils from a mine waste site in Madrid province (Spain).
    Gomez-Gonzalez MA; Serrano S; Laborda F; Garrido F
    Sci Total Environ; 2014 Dec; 500-501():23-33. PubMed ID: 25217741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.