BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38387639)

  • 1. Tailored polyhydroxyalkanoate production from renewable non-fatty acid carbon sources using engineered Cupriavidus necator H16.
    Park S; Roh S; Yoo J; Ahn JH; Gong G; Lee SM; Um Y; Han SO; Ko JK
    Int J Biol Macromol; 2024 Apr; 263(Pt 1):130360. PubMed ID: 38387639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes.
    Nomura CT; Tanaka T; Gan Z; Kuwabara K; Abe H; Takase K; Taguchi K; Doi Y
    Biomacromolecules; 2004; 5(4):1457-64. PubMed ID: 15244465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon dioxide valorization into resveratrol via lithoautotrophic fermentation using engineered Cupriavidus necator H16.
    Jang Y; Lee YJ; Gong G; Lee SM; Um Y; Kim KH; Ko JK
    Microb Cell Fact; 2024 Apr; 23(1):122. PubMed ID: 38678199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109.
    Nomura CT; Taguchi K; Gan Z; Kuwabara K; Tanaka T; Takase K; Doi Y
    Appl Environ Microbiol; 2005 Aug; 71(8):4297-306. PubMed ID: 16085817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High amounts of medium-chain-length polyhydroxyalkanoates subunits can be accumulated in recombinant Cupriavidus necator with wild-type synthase.
    Araceli FS; Juliana A R; Berenice VP; Fermin PG; Bruce A R
    J Biotechnol; 2022 Apr; 349():25-31. PubMed ID: 35341893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers.
    Zhuang Q; Qi Q
    Microb Cell Fact; 2019 Aug; 18(1):135. PubMed ID: 31409350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid beta-oxidation inhibited Ralstonia eutropha.
    Green PR; Kemper J; Schechtman L; Guo L; Satkowski M; Fiedler S; Steinbüchel A; Rehm BH
    Biomacromolecules; 2002; 3(1):208-13. PubMed ID: 11866575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant Escherichia coli from glucose.
    Hokamura A; Wakida I; Miyahara Y; Tsuge T; Shiratsuchi H; Tanaka K; Matsusaki H
    J Biosci Bioeng; 2015 Sep; 120(3):305-10. PubMed ID: 25732207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates.
    Li M; Chen X; Che X; Zhang H; Wu LP; Du H; Chen GQ
    Metab Eng; 2019 Mar; 52():253-262. PubMed ID: 30582985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109.
    Nomura CT; Taguchi K; Taguchi S; Doi Y
    Appl Environ Microbiol; 2004 Feb; 70(2):999-1007. PubMed ID: 14766582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli.
    Zhuang Q; Wang Q; Liang Q; Qi Q
    Metab Eng; 2014 Jul; 24():78-86. PubMed ID: 24836703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailor-Made Polyhydroxyalkanoates by Reconstructing Pseudomonas Entomophila.
    Li M; Ma Y; Zhang X; Zhang L; Chen X; Ye JW; Chen GQ
    Adv Mater; 2021 Oct; 33(41):e2102766. PubMed ID: 34322928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unique class I polyhydroxyalkanoate synthase (PhaC) from Brevundimonas sp. KH11J01 exists as a functional trimer: A comparative study with PhaC from Cupriavidus necator H16.
    Assefa NG; Hansen H; Altermark B
    N Biotechnol; 2022 Sep; 70():57-66. PubMed ID: 35533829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valorization of CO
    Nangle SN; Ziesack M; Buckley S; Trivedi D; Loh DM; Nocera DG; Silver PA
    Metab Eng; 2020 Nov; 62():207-220. PubMed ID: 32961296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers.
    Shen XW; Shi ZY; Song G; Li ZJ; Chen GQ
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):655-65. PubMed ID: 21509565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome characteristics dictate poly-R-(3)-hydroxyalkanoate production in Cupriavidus necator H16.
    Kutralam-Muniasamy G; Peréz-Guevara F
    World J Microbiol Biotechnol; 2018 May; 34(6):79. PubMed ID: 29799066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterologous expression of phaC2 gene and poly-3-hydroxyalkanoate production by recombinant Cupriavidus necator strains using canola oil as carbon source.
    Valdés J; Kutralam-Muniasamy G; Vergara-Porras B; Marsch R; Pérez-Guevara F; López-Cuellar MR
    N Biotechnol; 2018 Jan; 40(Pt B):200-206. PubMed ID: 28827158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medium-Chain-Length Fatty Acid Catabolism in Cupriavidus necator H16: Transcriptome Sequencing Reveals Differences from Long-Chain-Length Fatty Acid β-Oxidation and Involvement of Several Homologous Genes.
    Strittmatter CS; Poehlein A; Himmelbach A; Daniel R; Steinbüchel A
    Appl Environ Microbiol; 2023 Jan; 89(1):e0142822. PubMed ID: 36541797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering
    Deng RX; Li HL; Wang W; Hu HB; Zhang XH
    J Agric Food Chem; 2024 Apr; 72(15):8684-8692. PubMed ID: 38564621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.