BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38387748)

  • 1. Bone mimetic environments support engineering, propagation, and analysis of therapeutic response of patient-derived cells, ex vivo and in vivo.
    Paindelli C; Parietti V; Barrios S; Shepherd P; Pan T; Wang WL; Satcher RL; Logothetis CJ; Navone N; Campbell MT; Mikos AG; Dondossola E
    Acta Biomater; 2024 Apr; 178():83-92. PubMed ID: 38387748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.
    Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC
    Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts.
    Shokoohmand A; Ren J; Baldwin J; Atack A; Shafiee A; Theodoropoulos C; Wille ML; Tran PA; Bray LJ; Smith D; Chetty N; Pollock PM; Hutmacher DW; Clements JA; Williams ED; Bock N
    Biomaterials; 2019 Nov; 220():119402. PubMed ID: 31400612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel patient-derived intra-femoral xenograft model of bone metastatic prostate cancer that recapitulates mixed osteolytic and osteoblastic lesions.
    Raheem O; Kulidjian AA; Wu C; Jeong YB; Yamaguchi T; Smith KM; Goff D; Leu H; Morris SR; Cacalano NA; Masuda K; Jamieson CH; Kane CJ; Jamieson CA
    J Transl Med; 2011 Oct; 9():185. PubMed ID: 22035283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered bone for probing organotypic growth and therapy response of prostate cancer tumoroids in vitro.
    Paindelli C; Navone N; Logothetis CJ; Friedl P; Dondossola E
    Biomaterials; 2019 Mar; 197():296-304. PubMed ID: 30682644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineered Microtissue Models of the Human Bone Metastatic Microenvironment: A Novel In Vitro Theranostics Platform for Cancer Research.
    Bock N
    Methods Mol Biol; 2019; 2054():23-57. PubMed ID: 31482446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer.
    Valta MP; Zhao H; Saar M; Tuomela J; Nolley R; Linxweiler J; Sandholm J; Lehtimäki J; Härkönen P; Coleman I; Nelson PS; Corey E; Peehl DM
    Clin Exp Metastasis; 2016 Apr; 33(4):325-37. PubMed ID: 26873136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new murine model of osteoblastic/osteolytic lesions from human androgen-resistant prostate cancer.
    Fradet A; Sorel H; Depalle B; Serre CM; Farlay D; Turtoi A; Bellahcene A; Follet H; Castronovo V; Clézardin P; Bonnelye E
    PLoS One; 2013; 8(9):e75092. PubMed ID: 24069383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts.
    Lefley D; Howard F; Arshad F; Bradbury S; Brown H; Tulotta C; Eyre R; Alférez D; Wilkinson JM; Holen I; Clarke RB; Ottewell P
    Breast Cancer Res; 2019 Nov; 21(1):130. PubMed ID: 31783893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating Murine and Clinical Trials with Cabozantinib to Understand Roles of MET and VEGFR2 as Targets for Growth Inhibition of Prostate Cancer.
    Varkaris A; Corn PG; Parikh NU; Efstathiou E; Song JH; Lee YC; Aparicio A; Hoang AG; Gaur S; Thorpe L; Maity SN; Bar Eli M; Czerniak BA; Shao Y; Alauddin M; Lin SH; Logothetis CJ; Gallick GE
    Clin Cancer Res; 2016 Jan; 22(1):107-21. PubMed ID: 26272062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells.
    Brizuela L; Martin C; Jeannot P; Ader I; Gstalder C; Andrieu G; Bocquet M; Laffosse JM; Gomez-Brouchet A; Malavaud B; Sabbadini RA; Cuvillier O
    Mol Oncol; 2014 Oct; 8(7):1181-95. PubMed ID: 24768038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer.
    Cook LM; Araujo A; Pow-Sang JM; Budzevich MM; Basanta D; Lynch CC
    Sci Rep; 2016 Jul; 6():29384. PubMed ID: 27411810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Animal models of bone metastasis.
    Rosol TJ; Tannehill-Gregg SH; LeRoy BE; Mandl S; Contag CH
    Cancer; 2003 Feb; 97(3 Suppl):748-57. PubMed ID: 12548572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone.
    Hesami P; Holzapfel BM; Taubenberger A; Roudier M; Fazli L; Sieh S; Thibaudeau L; Gregory LS; Hutmacher DW; Clements JA
    Clin Exp Metastasis; 2014 Apr; 31(4):435-46. PubMed ID: 24510218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular signature of the stroma response in prostate cancer-induced osteoblastic bone metastasis highlights expansion of hematopoietic and prostate epithelial stem cell niches.
    Özdemir BC; Hensel J; Secondini C; Wetterwald A; Schwaninger R; Fleischmann A; Raffelsberger W; Poch O; Delorenzi M; Temanni R; Mills IG; van der Pluijm G; Thalmann GN; Cecchini MG
    PLoS One; 2014; 9(12):e114530. PubMed ID: 25485970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patient-derived xenograft (PDX) models.
    Navone NM; van Weerden WM; Vessella RL; Williams ED; Wang Y; Isaacs JT; Nguyen HM; Culig Z; van der Pluijm G; Rentsch CA; Marques RB; de Ridder CMA; Bubendorf L; Thalmann GN; Brennen WN; Santer FR; Moser PL; Shepherd P; Efstathiou E; Xue H; Lin D; Buijs J; Bosse T; Collins A; Maitland N; Buzza M; Kouspou M; Achtman A; Taylor RA; Risbridger G; Corey E
    Prostate; 2018 Dec; 78(16):1262-1282. PubMed ID: 30073676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction of Androgen Receptor Targeting shRNA Inhibits Tumor Growth in Patient-Derived Prostate Cancer Xenografts.
    Thomas PB; Alinezhad S; Joshi A; Sweeney K; Tse BWC; Tevz G; McPherson S; Nelson CC; Williams ED; Vela I
    Curr Oncol; 2023 Oct; 30(11):9437-9447. PubMed ID: 37999103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metastatic Prostate Cancer Cells Secrete Methylglyoxal-Derived MG-H1 to Reprogram Human Osteoblasts into a Dedifferentiated, Malignant-like Phenotype: A Possible Novel Player in Prostate Cancer Bone Metastases.
    Antognelli C; Marinucci L; Frosini R; Macchioni L; Talesa VN
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone.
    Nemeth JA; Harb JF; Barroso U; He Z; Grignon DJ; Cher ML
    Cancer Res; 1999 Apr; 59(8):1987-93. PubMed ID: 10213511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer.
    Lin SC; Lee YC; Yu G; Cheng CJ; Zhou X; Chu K; Murshed M; Le NT; Baseler L; Abe JI; Fujiwara K; deCrombrugghe B; Logothetis CJ; Gallick GE; Yu-Lee LY; Maity SN; Lin SH
    Dev Cell; 2017 Jun; 41(5):467-480.e3. PubMed ID: 28586644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.