BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38387940)

  • 41. Rational therapeutic options for patients with myeloproliferative neoplasms.
    Hoffman R
    Trans Am Clin Climatol Assoc; 2011; 122():11-26. PubMed ID: 21686205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Primary myelofibrosis and the myeloproliferative neoplasms: the role of individual variation.
    Stein BL; Moliterno AR
    JAMA; 2010 Jun; 303(24):2513-8. PubMed ID: 20571018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Myelosuppression toxicity of palliative splenic irradiation in myelofibrosis and malignant lymphoma.
    Ishibashi N; Maebayashi T; Aizawa T; Sakaguchi M; Abe O; Saito T; Tanaka Y
    Hematology; 2015 May; 20(4):203-7. PubMed ID: 25131182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Therapeutic potential of Janus-activated kinase-2 inhibitors for the management of myelofibrosis.
    Verstovsek S
    Clin Cancer Res; 2010 Apr; 16(7):1988-96. PubMed ID: 20215535
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Volumetric splenomegaly in patients with essential thrombocythemia and prefibrotic/early primary myelofibrosis.
    Lee MW; Yeon SH; Ryu H; Song IC; Lee HJ; Yun HJ; Kim SY; Lee JE; Shin KS; Jo DY
    Int J Hematol; 2021 Jul; 114(1):35-43. PubMed ID: 33704663
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Primary myelofibrosis: 2012 update on diagnosis, risk stratification, and management.
    Tefferi A
    Am J Hematol; 2011 Dec; 86(12):1017-26. PubMed ID: 22086865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of extensive splenomegaly in patients with myelofibrosis undergoing a reduced intensity allogeneic stem cell transplantation.
    Ciurea SO; Sadegi B; Wilbur A; Alagiozian-Angelova V; Gaitonde S; Dobogai LC; Akard LP; Hoffman R; Rondelli D
    Br J Haematol; 2008 Apr; 141(1):80-3. PubMed ID: 18324970
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Myelofibrosis: A review].
    Genthon A; Killian M; Mertz P; Cathebras P; Gimenez De Mestral S; Guyotat D; Chalayer E
    Rev Med Interne; 2021 Feb; 42(2):101-109. PubMed ID: 33243417
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management.
    Tefferi A
    Am J Hematol; 2021 Jan; 96(1):145-162. PubMed ID: 33197049
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche.
    Yao JC; Oetjen KA; Wang T; Xu H; Abou-Ezzi G; Krambs JR; Uttarwar S; Duncavage EJ; Link DC
    J Clin Invest; 2022 Jun; 132(11):. PubMed ID: 35439167
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel treatments for myelofibrosis: beyond JAK inhibitors.
    Tremblay D; Mesa R
    Int J Hematol; 2022 May; 115(5):645-658. PubMed ID: 35182376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Primary myelofibrosis: 2014 update on diagnosis, risk-stratification, and management.
    Tefferi A
    Am J Hematol; 2014 Sep; 89(9):915-25. PubMed ID: 25124313
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactivation of tuberculosis following ruxolitinib therapy for primary myelofibrosis: Case series and literature review.
    Khalid F; Damlaj M; AlZahrani M; Abuelgasim KA; Gmati GE
    Hematol Oncol Stem Cell Ther; 2021 Sep; 14(3):252-256. PubMed ID: 32201152
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ruxolitinib: a new treatment option for myelofibrosis.
    Ganetsky A
    Pharmacotherapy; 2013 Jan; 33(1):84-92. PubMed ID: 23307549
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Myelofibrosis: challenges for preclinical models and emerging therapeutic targets.
    Morsia E; Gangat N
    Expert Opin Ther Targets; 2021 Mar; 25(3):211-222. PubMed ID: 33844952
    [No Abstract]   [Full Text] [Related]  

  • 56. Primary myelofibrosis marrow-derived CD14+/CD34- monocytes induce myelofibrosis-like phenotype in immunodeficient mice and give rise to megakaryocytes.
    Manshouri T; Verstovsek S; Harris DM; Veletic I; Zhang X; Post SM; Bueso-Ramos CE; Estrov Z
    PLoS One; 2019; 14(9):e0222912. PubMed ID: 31569199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular Pathogenesis and Clinical Significance of Driver Mutations in Primary Myelofibrosis: A Review.
    Alshemmari SH; Rajan R; Emadi A
    Med Princ Pract; 2016; 25(6):501-509. PubMed ID: 27756071
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The spleen microenvironment influences disease transformation in a mouse model of KIT
    Pelusi N; Kosanke M; Riedt T; Rösseler C; Seré K; Li J; Gütgemann I; Zenke M; Janzen V; Schorle H
    Sci Rep; 2017 Jan; 7():41427. PubMed ID: 28128288
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Splenic extramedullary hematopoiesis in myelofibrosis. Pathogenetic considerations apropos of a personally studied case].
    Piaserico PL; Piaserico GP
    Minerva Med; 1983 Oct; 74(39):2313-8. PubMed ID: 6657100
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heat shock protein 90 inhibitors induce cell differentiation via the ubiquitin-dependent aurora kinase A degradation in a MPLW515L mouse model of primary myelofibrosis.
    Wang F; Zhang H; He B; Liu Z; Wu X; Liu Y; Xu X; Gou X; Wang H; Yang Q
    Hematol Oncol; 2023 Aug; 41(3):474-486. PubMed ID: 36422297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.