BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 38388461)

  • 21. Mutations in folate transporter genes and risk for human myelomeningocele.
    Findley TO; Tenpenny JC; O'Byrne MR; Morrison AC; Hixson JE; Northrup H; Au KS
    Am J Med Genet A; 2017 Nov; 173(11):2973-2984. PubMed ID: 28948692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Untargeted metabolite profiling of murine embryos to reveal metabolic perturbations associated with neural tube closure defects.
    Hansler A; Chen Q; Gray JD; Ross ME; Finnell RH; Gross SS
    Birth Defects Res A Clin Mol Teratol; 2014 Aug; 100(8):623-32. PubMed ID: 25115437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nutritional role of folate.
    Ebara S
    Congenit Anom (Kyoto); 2017 Sep; 57(5):138-141. PubMed ID: 28603928
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maternal dietary uridine causes, and deoxyuridine prevents, neural tube closure defects in a mouse model of folate-responsive neural tube defects.
    Martiniova L; Field MS; Finkelstein JL; Perry CA; Stover PJ
    Am J Clin Nutr; 2015 Apr; 101(4):860-9. PubMed ID: 25833982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene-environment interactions in the causation of neural tube defects: folate deficiency increases susceptibility conferred by loss of Pax3 function.
    Burren KA; Savery D; Massa V; Kok RM; Scott JM; Blom HJ; Copp AJ; Greene ND
    Hum Mol Genet; 2008 Dec; 17(23):3675-85. PubMed ID: 18753144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Folate and epigenetic mechanisms in neural tube development and defects.
    Meethal SV; Hogan KJ; Mayanil CS; Iskandar BJ
    Childs Nerv Syst; 2013 Sep; 29(9):1427-33. PubMed ID: 24013316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-carbon metabolism and folate transporter genes: Do they factor prominently in the genetic etiology of neural tube defects?
    Steele JW; Kim SE; Finnell RH
    Biochimie; 2020 Jun; 173():27-32. PubMed ID: 32061804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The antagonism of folate receptor by dolutegravir: developmental toxicity reduction by supplemental folic acid.
    Cabrera RM; Souder JP; Steele JW; Yeo L; Tukeman G; Gorelick DA; Finnell RH
    AIDS; 2019 Nov; 33(13):1967-1976. PubMed ID: 31259764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Why is folate effective in preventing neural tube closure defects?
    Sato K
    Med Hypotheses; 2020 Jan; 134():109429. PubMed ID: 31634773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nutri-epigenomic Studies Related to Neural Tube Defects: Does Folate Affect Neural Tube Closure Via Changes in DNA Methylation?
    Rochtus A; Jansen K; Van Geet C; Freson K
    Mini Rev Med Chem; 2015; 15(13):1095-102. PubMed ID: 26349489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Folate-dependent methylation of septins governs ciliogenesis during neural tube closure.
    Toriyama M; Toriyama M; Wallingford JB; Finnell RH
    FASEB J; 2017 Aug; 31(8):3622-3635. PubMed ID: 28432198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aberrant Gcm1 expression mediates Wnt/β-catenin pathway activation in folate deficiency involved in neural tube defects.
    Li J; Xie Q; Gao J; Wang F; Bao Y; Wu L; Yang L; Liu Z; Guo R; Khan A; Dan Liu ; Li C; Wu J; Xie J
    Cell Death Dis; 2021 Mar; 12(3):234. PubMed ID: 33664222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emerging roles for folate receptor FOLR1 in signaling and cancer.
    Nawaz FZ; Kipreos ET
    Trends Endocrinol Metab; 2022 Mar; 33(3):159-174. PubMed ID: 35094917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial one-carbon metabolism and neural tube defects.
    Momb J; Appling DR
    Birth Defects Res A Clin Mol Teratol; 2014 Aug; 100(8):576-83. PubMed ID: 24985542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects.
    Anthony TE; Heintz N
    J Comp Neurol; 2007 Jan; 500(2):368-83. PubMed ID: 17111379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organoids as a new model system to study neural tube defects.
    Wu Y; Peng S; Finnell RH; Zheng Y
    FASEB J; 2021 Apr; 35(4):e21545. PubMed ID: 33729606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice.
    Beaudin AE; Abarinov EV; Noden DM; Perry CA; Chu S; Stabler SP; Allen RH; Stover PJ
    Am J Clin Nutr; 2011 Apr; 93(4):789-98. PubMed ID: 21346092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Folate deficiency disturbs hsa-let-7 g level through methylation regulation in neural tube defects.
    Wang L; Shangguan S; Xin Y; Chang S; Wang Z; Lu X; Wu L; Niu B; Zhang T
    J Cell Mol Med; 2017 Dec; 21(12):3244-3253. PubMed ID: 28631291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of folate supplementation on the risk of spontaneous and induced neural tube defects in Splotch mice.
    Gefrides LA; Bennett GD; Finnell RH
    Teratology; 2002 Feb; 65(2):63-9. PubMed ID: 11857507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abnormal folate metabolism in foetuses affected by neural tube defects.
    Dunlevy LP; Chitty LS; Burren KA; Doudney K; Stojilkovic-Mikic T; Stanier P; Scott R; Copp AJ; Greene ND
    Brain; 2007 Apr; 130(Pt 4):1043-9. PubMed ID: 17438019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.