BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38388573)

  • 1. scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data.
    Tang S; Cui X; Wang R; Li S; Li S; Huang X; Chen S
    Nat Commun; 2024 Feb; 15(1):1629. PubMed ID: 38388573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RefTM: reference-guided topic modeling of single-cell chromatin accessibility data.
    Zhang Z; Chen S; Lin Z
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36513377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrete latent embedding of single-cell chromatin accessibility sequencing data for uncovering cell heterogeneity.
    Cui X; Chen X; Li Z; Gao Z; Chen S; Jiang R
    Nat Comput Sci; 2024 May; 4(5):346-359. PubMed ID: 38730185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RA3 is a reference-guided approach for epigenetic characterization of single cells.
    Chen S; Yan G; Zhang W; Li J; Jiang R; Lin Z
    Nat Commun; 2021 Apr; 12(1):2177. PubMed ID: 33846355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Annotation for Differentiating and Imbalanced Cell Types in Single-Cell Chromatin Accessibility Data.
    Jia Y; Li S; Jiang R; Chen S
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):461-471. PubMed ID: 38442065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data.
    Chen S; Wang R; Long W; Jiang R
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Publisher Correction: scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data.
    Tang S; Cui X; Wang R; Li S; Li S; Huang X; Chen S
    Nat Commun; 2024 Mar; 15(1):2212. PubMed ID: 38472271
    [No Abstract]   [Full Text] [Related]  

  • 8. Cofea: correlation-based feature selection for single-cell chromatin accessibility data.
    Li K; Chen X; Song S; Hou L; Chen S; Jiang R
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38113078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scIBD: a self-supervised iterative-optimizing model for boosting the detection of heterotypic doublets in single-cell chromatin accessibility data.
    Zhang W; Jiang R; Chen S; Wang Y
    Genome Biol; 2023 Oct; 24(1):225. PubMed ID: 37814314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. simCAS: an embedding-based method for simulating single-cell chromatin accessibility sequencing data.
    Li C; Chen X; Chen S; Jiang R; Zhang X
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37494428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EpiCarousel: memory- and time-efficient identification of metacells for atlas-level single-cell chromatin accessibility data.
    Li S; Li Y; Sun Y; Li Y; Chen X; Tang S; Chen S
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38588573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EpiScanpy: integrated single-cell epigenomic analysis.
    Danese A; Richter ML; Chaichoompu K; Fischer DS; Theis FJ; Colomé-Tatché M
    Nat Commun; 2021 Sep; 12(1):5228. PubMed ID: 34471111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellcano: supervised cell type identification for single cell ATAC-seq data.
    Ma W; Lu J; Wu H
    Nat Commun; 2023 Apr; 14(1):1864. PubMed ID: 37012226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. APEC: an accesson-based method for single-cell chromatin accessibility analysis.
    Li B; Li Y; Li K; Zhu L; Yu Q; Cai P; Fang J; Zhang W; Du P; Jiang C; Lin J; Qu K
    Genome Biol; 2020 May; 21(1):116. PubMed ID: 32398051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data.
    Persad S; Choo ZN; Dien C; Sohail N; Masilionis I; Chaligné R; Nawy T; Brown CC; Sharma R; Pe'er I; Setty M; Pe'er D
    Nat Biotechnol; 2023 Dec; 41(12):1746-1757. PubMed ID: 36973557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-based integrative analysis of single-cell transcriptomic and epigenomic data for cell types.
    Wu W; Zhang W; Ma X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks.
    Yuan H; Kelley DR
    Nat Methods; 2022 Sep; 19(9):1088-1096. PubMed ID: 35941239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations.
    Lei T; Chen R; Zhang S; Chen Y
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data.
    Schep AN; Wu B; Buenrostro JD; Greenleaf WJ
    Nat Methods; 2017 Oct; 14(10):975-978. PubMed ID: 28825706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of computational methods for the analysis of single-cell ATAC-seq data.
    Chen H; Lareau C; Andreani T; Vinyard ME; Garcia SP; Clement K; Andrade-Navarro MA; Buenrostro JD; Pinello L
    Genome Biol; 2019 Nov; 20(1):241. PubMed ID: 31739806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.