BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38388573)

  • 21. BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization.
    de Boer CG; Regev A
    BMC Bioinformatics; 2018 Jul; 19(1):253. PubMed ID: 29970004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity.
    Liu L; Liu C; Quintero A; Wu L; Yuan Y; Wang M; Cheng M; Leng L; Xu L; Dong G; Li R; Liu Y; Wei X; Xu J; Chen X; Lu H; Chen D; Wang Q; Zhou Q; Lin X; Li G; Liu S; Wang Q; Wang H; Fink JL; Gao Z; Liu X; Hou Y; Zhu S; Yang H; Ye Y; Lin G; Chen F; Herrmann C; Eils R; Shang Z; Xu X
    Nat Commun; 2019 Jan; 10(1):470. PubMed ID: 30692544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A computational approach for the functional classification of the epigenome.
    Gandolfi F; Tramontano A
    Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EpiAlign: an alignment-based bioinformatic tool for comparing chromatin state sequences.
    Ge X; Zhang H; Xie L; Li WV; Kwon SB; Li JJ
    Nucleic Acids Res; 2019 Jul; 47(13):e77. PubMed ID: 31045217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects.
    Lu C; Wei Y; Abbas M; Agula H; Wang E; Meng Z; Zhang R
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenomics: Technologies and Applications.
    Wang KC; Chang HY
    Circ Res; 2018 Apr; 122(9):1191-1199. PubMed ID: 29700067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution.
    Shema E; Bernstein BE; Buenrostro JD
    Nat Genet; 2019 Jan; 51(1):19-25. PubMed ID: 30559489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preprocessing and Computational Analysis of Single-Cell Epigenomic Datasets.
    Lareau C; Kangeyan D; Aryee MJ
    Methods Mol Biol; 2019; 1935():187-202. PubMed ID: 30758828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A fast, scalable and versatile tool for analysis of single-cell omics data.
    Zhang K; Zemke NR; Armand EJ; Ren B
    Nat Methods; 2024 Feb; 21(2):217-227. PubMed ID: 38191932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developing OCHROdb, a comprehensive quality checked database of open chromatin regions from sequencing data.
    Shooshtari P; Feng S; Nelakuditi V; Asakereh R; Hosseini Naghavi N; Foong J; Brudno M; Cotsapas C
    Sci Rep; 2023 May; 13(1):8106. PubMed ID: 37202401
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration.
    Cao Y; Fu L; Wu J; Peng Q; Nie Q; Zhang J; Xie X
    Bioinformatics; 2021 Jul; 37(Suppl_1):i317-i326. PubMed ID: 34252968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeepHistone: a deep learning approach to predicting histone modifications.
    Yin Q; Wu M; Liu Q; Lv H; Jiang R
    BMC Genomics; 2019 Apr; 20(Suppl 2):193. PubMed ID: 30967126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Principled and interpretable alignability testing and integration of single-cell data.
    Ma R; Sun ED; Donoho D; Zou J
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2313719121. PubMed ID: 38416677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine Learning in Epigenomics: Insights into Cancer Biology and Medicine.
    Arslan E; Schulz J; Rai K
    Biochim Biophys Acta Rev Cancer; 2021 Dec; 1876(2):188588. PubMed ID: 34245839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-cell epigenomic variability reveals functional cancer heterogeneity.
    Litzenburger UM; Buenrostro JD; Wu B; Shen Y; Sheffield NC; Kathiria A; Greenleaf WJ; Chang HY
    Genome Biol; 2017 Jan; 18(1):15. PubMed ID: 28118844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization.
    Liu D; Davila-Velderrain J; Zhang Z; Kellis M
    Nucleic Acids Res; 2019 Aug; 47(14):7235-7246. PubMed ID: 31265076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-cell sequencing techniques from individual to multiomics analyses.
    Kashima Y; Sakamoto Y; Kaneko K; Seki M; Suzuki Y; Suzuki A
    Exp Mol Med; 2020 Sep; 52(9):1419-1427. PubMed ID: 32929221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Churros: a Docker-based pipeline for large-scale epigenomic analysis.
    Wang J; Nakato R
    DNA Res; 2024 Feb; 31(1):. PubMed ID: 38102723
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CoBATCH for High-Throughput Single-Cell Epigenomic Profiling.
    Wang Q; Xiong H; Ai S; Yu X; Liu Y; Zhang J; He A
    Mol Cell; 2019 Oct; 76(1):206-216.e7. PubMed ID: 31471188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks.
    Rubin AJ; Parker KR; Satpathy AT; Qi Y; Wu B; Ong AJ; Mumbach MR; Ji AL; Kim DS; Cho SW; Zarnegar BJ; Greenleaf WJ; Chang HY; Khavari PA
    Cell; 2019 Jan; 176(1-2):361-376.e17. PubMed ID: 30580963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.