BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38388659)

  • 1. Multiparametric in vitro and in vivo analysis of the safety profile of self-assembling peptides.
    Ramirez-Labrada A; Santiago L; Pesini C; Arrieta M; Arias M; Calvo Pérez A; Ciulla MG; Forouharshad M; Pardo J; Gálvez EM; Gelain F
    Sci Rep; 2024 Feb; 14(1):4395. PubMed ID: 38388659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Ciulla MG; Marchini A; Gazzola J; Forouharshad M; Pugliese R; Gelain F
    ACS Appl Bio Mater; 2024 Mar; 7(3):1723-1734. PubMed ID: 38346174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembling peptides cross-linked with genipin: resilient hydrogels and self-standing electrospun scaffolds for tissue engineering applications.
    Pugliese R; Maleki M; Zuckermann RN; Gelain F
    Biomater Sci; 2018 Dec; 7(1):76-91. PubMed ID: 30475373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft materials based on designed self-assembling peptides: from design to application.
    Tsutsumi H; Mihara H
    Mol Biosyst; 2013 Apr; 9(4):609-17. PubMed ID: 23440077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications.
    Karavasili C; Fatouros DG
    Adv Drug Deliv Rev; 2021 Jul; 174():387-405. PubMed ID: 33965460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides.
    Maleki M; Natalello A; Pugliese R; Gelain F
    Acta Biomater; 2017 Mar; 51():268-278. PubMed ID: 28093364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BMHP1-derived self-assembling peptides: hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications.
    Gelain F; Silva D; Caprini A; Taraballi F; Natalello A; Villa O; Nam KT; Zuckermann RN; Doglia SM; Vescovi A
    ACS Nano; 2011 Mar; 5(3):1845-59. PubMed ID: 21314189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.
    Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F
    Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides.
    Horgan CC; Rodriguez AL; Li R; Bruggeman KF; Stupka N; Raynes JK; Day L; White JW; Williams RJ; Nisbet DR
    Acta Biomater; 2016 Jul; 38():11-22. PubMed ID: 27131571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembling Peptides and Their Application in the Treatment of Diseases.
    Lee S; Trinh THT; Yoo M; Shin J; Lee H; Kim J; Hwang E; Lim YB; Ryou C
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31766475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of motif net charge and amphiphilicity on the self-assembly of functionally designer RADA16-I peptides.
    Wu D; Zhang S; Zhao Y; Ao N; Ramakrishna S; He L
    Biomed Mater; 2018 Mar; 13(3):035011. PubMed ID: 29546848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives.
    Wang XJ; Cheng J; Zhang LY; Zhang JG
    Drug Deliv; 2022 Dec; 29(1):1184-1200. PubMed ID: 35403517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembling Peptides: From Design to Biomedical Applications.
    La Manna S; Di Natale C; Onesto V; Marasco D
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosted Cross-Linking and Characterization of High-Performing Self-Assembling Peptides.
    Ciulla MG; Pugliese R; Gelain F
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembling Peptide-Based Functional Biomaterials.
    Huo Y; Hu J; Yin Y; Liu P; Cai K; Ji W
    Chembiochem; 2023 Jan; 24(2):e202200582. PubMed ID: 36346708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
    Gray VP; Amelung CD; Duti IJ; Laudermilch EG; Letteri RA; Lampe KJ
    Acta Biomater; 2022 Mar; 140():43-75. PubMed ID: 34710626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancements in self-assembling peptides: Bridging gaps in 3D cell culture and electronic device fabrication.
    Jafari A
    J Biomater Appl; 2024 May; 38(10):1013-1035. PubMed ID: 38502905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides.
    Koss KM; Unsworth LD
    Acta Biomater; 2016 Oct; 44():2-15. PubMed ID: 27544809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.