These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 38388659)
41. Self-Assembly of Short Amphiphilic Peptides and Their Biomedical Applications. Le X; Gao T; Wang L; Wei F; Chen C; Zhao Y Curr Pharm Des; 2022; 28(44):3546-3562. PubMed ID: 36424793 [TBL] [Abstract][Full Text] [Related]
42. Multipotential Role of Growth Factor Mimetic Peptides for Osteochondral Tissue Engineering. Rizzo MG; Palermo N; D'Amora U; Oddo S; Guglielmino SPP; Conoci S; Szychlinska MA; Calabrese G Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806393 [TBL] [Abstract][Full Text] [Related]
43. [Study on the self-assembly and cytocompatibility of the natural amino acid biomaterials]. Zhou Q; Lin J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):898-902. PubMed ID: 23198431 [TBL] [Abstract][Full Text] [Related]
44. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury. Zweckberger K; Ahuja CS; Liu Y; Wang J; Fehlings MG Acta Biomater; 2016 Sep; 42():77-89. PubMed ID: 27296842 [TBL] [Abstract][Full Text] [Related]
45. Amino acid composition of nanofibrillar self-assembling peptide hydrogels affects responses of periodontal tissue cells in vitro. Koch F; Wolff A; Mathes S; Pieles U; Saxer SS; Kreikemeyer B; Peters K Int J Nanomedicine; 2018; 13():6717-6733. PubMed ID: 30425485 [TBL] [Abstract][Full Text] [Related]
46. In vivo assessment of grafted cortical neural progenitor cells and host response to functionalized self-assembling peptide hydrogels and the implications for tissue repair. Rodriguez AL; Wang TY; Bruggeman KF; Horgan CC; Li R; Williams RJ; Parish CL; Nisbet DR J Mater Chem B; 2014 Nov; 2(44):7771-7778. PubMed ID: 32261914 [TBL] [Abstract][Full Text] [Related]
47. Design of a RADA16-based self-assembling peptide nanofiber scaffold for biomedical applications. Wang R; Wang Z; Guo Y; Li H; Chen Z J Biomater Sci Polym Ed; 2019; 30(9):713-736. PubMed ID: 31018781 [TBL] [Abstract][Full Text] [Related]
48. Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Li J; Xing R; Bai S; Yan X Soft Matter; 2019 Feb; 15(8):1704-1715. PubMed ID: 30724947 [TBL] [Abstract][Full Text] [Related]
49. Development of collagen/polydopamine complexed matrix as mechanically enhanced and highly biocompatible semi-natural tissue engineering scaffold. Hu Y; Dan W; Xiong S; Kang Y; Dhinakar A; Wu J; Gu Z Acta Biomater; 2017 Jan; 47():135-148. PubMed ID: 27744068 [TBL] [Abstract][Full Text] [Related]
50. Self-assembling peptides for stem cell and tissue engineering. Tatman PD; Muhonen EG; Wickers ST; Gee AO; Kim ES; Kim DH Biomater Sci; 2016 Apr; 4(4):543-54. PubMed ID: 26878078 [TBL] [Abstract][Full Text] [Related]
51. Variants of self-assembling peptide, KLD-12 that show both rapid fracture healing and antimicrobial properties. Tripathi JK; Pal S; Awasthi B; Kumar A; Tandon A; Mitra K; Chattopadhyay N; Ghosh JK Biomaterials; 2015 Jul; 56():92-103. PubMed ID: 25934283 [TBL] [Abstract][Full Text] [Related]
52. Self-assembling peptides: implications for patenting in drug delivery and tissue engineering. Kumar P; Pillay V; Modi G; Choonara YE; du Toit LC; Naidoo D Recent Pat Drug Deliv Formul; 2011 Jan; 5(1):24-51. PubMed ID: 21143127 [TBL] [Abstract][Full Text] [Related]
53. Mansour A; Mezour MA; Badran Z; Tamimi F Tissue Eng Part A; 2017 Dec; 23(23-24):1436-1451. PubMed ID: 28562183 [TBL] [Abstract][Full Text] [Related]
54. Self-assembling short oligopeptides and the promotion of angiogenesis. Narmoneva DA; Oni O; Sieminski AL; Zhang S; Gertler JP; Kamm RD; Lee RT Biomaterials; 2005 Aug; 26(23):4837-46. PubMed ID: 15763263 [TBL] [Abstract][Full Text] [Related]
55. Bimolecular based heparin and self-assembling hydrogel for tissue engineering applications. Fernández-Muiños T; Recha-Sancho L; López-Chicón P; Castells-Sala C; Mata A; Semino CE Acta Biomater; 2015 Apr; 16():35-48. PubMed ID: 25595471 [TBL] [Abstract][Full Text] [Related]
56. Functionalization of biomedical materials using fusion peptides for tissue regeneration. Guo X; Ma Y; Ruhan A; Pan S; Guo Y; Shi X; Gao G; Sun L; Wang J Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36130606 [TBL] [Abstract][Full Text] [Related]
57. Cross-Linking Approaches to Tuning the Mechanical Properties of Peptide π-Electron Hydrogels. Liyanage W; Ardoña HA; Mao HQ; Tovar JD Bioconjug Chem; 2017 Mar; 28(3):751-759. PubMed ID: 28292179 [TBL] [Abstract][Full Text] [Related]
58. Design and Applications of Cell-Selective Surfaces and Interfaces. Zhang H; Zheng X; Ahmed W; Yao Y; Bai J; Chen Y; Gao C Biomacromolecules; 2018 Jun; 19(6):1746-1763. PubMed ID: 29665330 [TBL] [Abstract][Full Text] [Related]
59. Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation. Dos Santos BP; Garbay B; Fenelon M; Rosselin M; Garanger E; Lecommandoux S; Oliveira H; Amédée J Acta Biomater; 2019 Nov; 99():154-167. PubMed ID: 31425892 [TBL] [Abstract][Full Text] [Related]
60. Biofunctionalization of TiO Franchi S; Secchi V; Santi M; Dettin M; Zamuner A; Battocchio C; Iucci G Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():651-656. PubMed ID: 29853135 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]