These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 38388681)

  • 1. Continually adapting pre-trained language model to universal annotation of single-cell RNA-seq data.
    Wan H; Yuan M; Fu Y; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38388681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data.
    Yuan M; Wan H; Wang Z; Guo Q; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38279647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scEMAIL: Universal and Source-free Annotation Method for scRNA-seq Data with Novel Cell-type Perception.
    Wan H; Chen L; Deng M
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):939-958. PubMed ID: 36608843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement.
    Guo Q; Yuan M; Zhang L; Deng M
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38935069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CIForm as a Transformer-based model for cell-type annotation of large-scale single-cell RNA-seq data.
    Xu J; Zhang A; Liu F; Chen L; Zhang X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37200157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing parameter efficient methods for pre-trained language model in annotating scRNA-seq data.
    Xia Y; Liu Y; Li T; He S; Chang H; Wang Y; Zhang Y; Ge W
    Methods; 2024 Aug; 228():12-21. PubMed ID: 38759908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets.
    Yuan M; Chen L; Deng M
    Bioinformatics; 2022 Jan; 38(3):738-745. PubMed ID: 34623390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data.
    Wan H; Chen L; Deng M
    Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scEVOLVE: cell-type incremental annotation without forgetting for single-cell RNA-seq data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38366803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scGAD: a new task and end-to-end framework for generalized cell type annotation and discovery.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36869836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaeda computationally annotates doublets in single-cell RNA sequencing data.
    Schriever H; Kostka D
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.
    Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scSemiGAN: a single-cell semi-supervised annotation and dimensionality reduction framework based on generative adversarial network.
    Xu Z; Luo J; Xiong Z
    Bioinformatics; 2022 Nov; 38(22):5042-5048. PubMed ID: 36193998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.
    Gan Y; Chen Y; Xu G; Guo W; Zou G
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XgCPred: Cell type classification using XGBoost-CNN integration and exploiting gene expression imaging in single-cell RNAseq data.
    Abu-Doleh A; Al Fahoum A
    Comput Biol Med; 2024 Oct; 181():109066. PubMed ID: 39180857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis.
    Yang L; Ng YE; Sun H; Li Y; Chini LCS; LeBrasseur NK; Chen J; Zhang X
    BMC Biol; 2023 Oct; 21(1):223. PubMed ID: 37858214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.