These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38388761)

  • 1. A novel atrial fibrillation automatic detection algorithm based on ensemble learning and multi-feature discrimination.
    Wan X; Liu Y; Mei X; Ye J; Zeng C; Chen Y
    Med Biol Eng Comput; 2024 Jun; 62(6):1809-1820. PubMed ID: 38388761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Detection model of atrial fibrillation based on multi-branch and multi-scale convolutional networks].
    Zhao S; Liu M; Liu M; Yang X; Xiong P; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):700-707. PubMed ID: 39218595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017.
    Kleyko D; Osipov E; Wiklund U
    Biomed Phys Eng Express; 2020 Feb; 6(2):025010. PubMed ID: 33438636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Atrial Fibrillation from Single Lead ECG Signal Using Multirate Cosine Filter Bank and Deep Neural Network.
    Ghosh SK; Tripathy RK; Paternina MRA; Arrieta JJ; Zamora-Mendez A; Naik GR
    J Med Syst; 2020 May; 44(6):114. PubMed ID: 32388733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate detection of atrial fibrillation events with R-R intervals from ECG signals.
    Duan J; Wang Q; Zhang B; Liu C; Li C; Wang L
    PLoS One; 2022; 17(8):e0271596. PubMed ID: 35925979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-term atrial fibrillation detection using electrocardiograms: A comparison of machine learning approaches.
    Jahan MS; Mansourvar M; Puthusserypady S; Wiil UK; Peimankar A
    Int J Med Inform; 2022 Jul; 163():104790. PubMed ID: 35552189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG.
    Christov I; Krasteva V; Simova I; Neycheva T; Schmid R
    Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Detection of Atrial Fibrillation in ECG Using Co-Occurrence Patterns of Dynamic Symbol Assignment and Machine Learning.
    Ganapathy N; Baumgärtel D; Deserno TM
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning detection of Atrial Fibrillation using wearable technology.
    Lown M; Brown M; Brown C; Yue AM; Shah BN; Corbett SJ; Lewith G; Stuart B; Moore M; Little P
    PLoS One; 2020; 15(1):e0227401. PubMed ID: 31978173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved method to detect arrhythmia using ensemble learning-based model in multi lead electrocardiogram (ECG).
    Mandala S; Rizal A; Adiwijaya ; Nurmaini S; Suci Amini S; Almayda Sudarisman G; Wen Hau Y; Hanan Abdullah A
    PLoS One; 2024; 19(4):e0297551. PubMed ID: 38593145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of atrial fibrillation using discrete-state Markov models and Random Forests.
    Kalidas V; Tamil LS
    Comput Biol Med; 2019 Oct; 113():103386. PubMed ID: 31446318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-varying coherence function for atrial fibrillation detection.
    Lee J; Nam Y; McManus DD; Chon KH
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2783-93. PubMed ID: 23708769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Few-shot transfer learning for personalized atrial fibrillation detection using patient-based siamese network with single-lead ECG records.
    Ng Y; Liao MT; Chen TL; Lee CK; Chou CY; Wang W
    Artif Intell Med; 2023 Oct; 144():102644. PubMed ID: 37783539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AF detection from ECG recordings using feature selection, sparse coding, and ensemble learning.
    Rizwan M; Whitaker BM; Anderson DV
    Physiol Meas; 2018 Dec; 39(12):124007. PubMed ID: 30524091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated detection of atrial fibrillation episode using novel heart rate variability features.
    Gilani M; Eklund JM; Makrehchi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3461-3464. PubMed ID: 28269045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation and validation of real-time algorithms for atrial fibrillation detection on a wearable ECG device.
    Marsili IA; Biasiolli L; Masè M; Adami A; Andrighetti AO; Ravelli F; Nollo G
    Comput Biol Med; 2020 Jan; 116():103540. PubMed ID: 31751811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-complexity algorithm for detection of atrial fibrillation using an ECG.
    Sadr N; Jayawardhana M; Pham TT; Tang R; Balaei AT; de Chazal P
    Physiol Meas; 2018 Jun; 39(6):064003. PubMed ID: 29791322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings.
    Zhang P; Ma C; Sun Y; Fan G; Song F; Feng Y; Zhang G
    Comput Biol Med; 2021 Dec; 139():104880. PubMed ID: 34700255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TP-CNN: A Detection Method for atrial fibrillation based on transposed projection signals with compressed sensed ECG.
    Zhang H; Dong Z; Sun M; Gu H; Wang Z
    Comput Methods Programs Biomed; 2021 Oct; 210():106358. PubMed ID: 34478912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of atrial fibrillation using a nonlinear Lorenz Scattergram and deep learning in primary care.
    Yao Y; Jia Y; Wu M; Wang S; Song H; Fang X; Liao X; Li D; Zhao Q
    BMC Prim Care; 2024 Jul; 25(1):267. PubMed ID: 39033295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.