These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 38389534)
1. Effects of type of substrate and dilution rate on fermentation in serial rumen mixed cultures. Ungerfeld EM; Cancino-Padilla N; Vera-Aguilera N; Scorcione MC; Saldivia M; Lagos-Pailla L; Vera M; Cerda C; Muñoz C; Urrutia N; Martínez ED Front Microbiol; 2024; 15():1356966. PubMed ID: 38389534 [TBL] [Abstract][Full Text] [Related]
2. Association of aqueous hydrogen concentration with methane production in continuous cultures modulated to vary pH and solids passage rate. Wenner BA; de Souza J; Batistel F; Hackmann TJ; Yu Z; Firkins JL J Dairy Sci; 2017 Jul; 100(7):5378-5389. PubMed ID: 28456412 [TBL] [Abstract][Full Text] [Related]
3. Methane production by mixed ruminal cultures incubated in dual-flow fermentors. Eun JS; Fellner V; Gumpertz ML J Dairy Sci; 2004 Jan; 87(1):112-21. PubMed ID: 14765817 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro - Part 2. Dairy goats. Romero P; Huang R; Jiménez E; Palma-Hidalgo JM; Ungerfeld EM; Popova M; Morgavi DP; Belanche A; Yáñez-Ruiz DR Animal; 2023 May; 17(5):100789. PubMed ID: 37087998 [TBL] [Abstract][Full Text] [Related]
5. Caffeic acid modulates methane production and rumen fermentation in an opposite way with high-forage or high-concentrate substrate in vitro. Jin Q; You W; Tan X; Liu G; Zhang X; Liu X; Wan F; Wei C J Sci Food Agric; 2021 May; 101(7):3013-3020. PubMed ID: 33205409 [TBL] [Abstract][Full Text] [Related]
6. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. Calsamiglia S; Cardozo PW; Ferret A; Bach A J Anim Sci; 2008 Mar; 86(3):702-11. PubMed ID: 18073289 [TBL] [Abstract][Full Text] [Related]
7. Effects of dilution rate and retention time of concentrate on efficiency of microbial growth, methane production, and ruminal fermentation in Rusitec fermenters. Martínez ME; Ranilla MJ; Ramos S; Tejido ML; Carro MD J Dairy Sci; 2009 Aug; 92(8):3930-8. PubMed ID: 19620676 [TBL] [Abstract][Full Text] [Related]
8. Effects of garlic oil, nitrate, saponin and their combinations supplemented to different substrates on in vitro fermentation, ruminal methanogenesis, and abundance and diversity of microbial populations. Patra AK; Yu Z J Appl Microbiol; 2015 Jul; 119(1):127-38. PubMed ID: 25846054 [TBL] [Abstract][Full Text] [Related]
9. Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro. Ertl P; Knaus W; Metzler-Zebeli BU; Klevenhusen F; Khiaosa-Ard R; Zebeli Q J Dairy Sci; 2015 Jul; 98(7):4762-71. PubMed ID: 25981072 [TBL] [Abstract][Full Text] [Related]
10. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats. Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478 [TBL] [Abstract][Full Text] [Related]
11. Inhibiting methanogenesis by targeting thermodynamics and enzymatic reactions in mixed cultures of rumen microbes Tanaka K; Collins S; Polkoff K; Fellner V Front Microbiol; 2024; 15():1322207. PubMed ID: 39206376 [TBL] [Abstract][Full Text] [Related]
12. Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation. Ungerfeld EM Front Microbiol; 2015; 6():1272. PubMed ID: 26635743 [TBL] [Abstract][Full Text] [Related]
13. Effects of acetate, propionate, and pH on volatile fatty acid thermodynamics in continuous cultures of ruminal contents. Li MM; Ghimire S; Wenner BA; Kohn RA; Firkins JL; Gill B; Hanigan MD J Dairy Sci; 2022 Nov; 105(11):8879-8897. PubMed ID: 36085109 [TBL] [Abstract][Full Text] [Related]
14. Bayesian mechanistic modeling of thermodynamically controlled volatile fatty acid, hydrogen and methane production in the bovine rumen. van Lingen HJ; Fadel JG; Moraes LE; Bannink A; Dijkstra J J Theor Biol; 2019 Nov; 480():150-165. PubMed ID: 31401059 [TBL] [Abstract][Full Text] [Related]
15. Substituting ryegrass-based pasture with graded levels of forage rape in the diet of lambs decreases methane emissions and increases propionate, succinate, and primary alcohols in the rumen. Della Rosa MM; Sandoval E; Reid P; Luo D; Pacheco D; Janssen PH; Jonker A J Anim Sci; 2022 Sep; 100(9):. PubMed ID: 35723288 [TBL] [Abstract][Full Text] [Related]
16. Method of diet delivery to dairy cows: Effects on nutrient digestion, rumen fermentation, methane emissions from enteric fermentation and stored manure, nitrogen excretion, and milk production. Benchaar C; Hassanat F J Dairy Sci; 2021 Nov; 104(11):11686-11698. PubMed ID: 34389151 [TBL] [Abstract][Full Text] [Related]
17. Molecular hydrogen produced by elemental magnesium inhibits rumen fermentation and enhances methanogenesis in dairy cows. Ma ZY; Zhang XM; Wang M; Wang R; Jiang ZY; Tan ZL; Gao FX; Muhammed A J Dairy Sci; 2019 Jun; 102(6):5566-5576. PubMed ID: 30981486 [TBL] [Abstract][Full Text] [Related]
18. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows. van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153 [TBL] [Abstract][Full Text] [Related]
19. Effects of species-diverse high-alpine forage on in vitro ruminal fermentation when used as donor cow's feed or directly incubated. Khiaosa-Ard R; Soliva CR; Kreuzer M; Leiber F Animal; 2012 Nov; 6(11):1764-73. PubMed ID: 22717263 [TBL] [Abstract][Full Text] [Related]
20. Methane Inhibition Alters the Microbial Community, Hydrogen Flow, and Fermentation Response in the Rumen of Cattle. Martinez-Fernandez G; Denman SE; Yang C; Cheung J; Mitsumori M; McSweeney CS Front Microbiol; 2016; 7():1122. PubMed ID: 27486452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]