These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38389680)

  • 1. Evaluation of the Morphological Effects of Hydroxyapatite Nanoparticles on the Rheological Properties and Printability of Hydroxyapatite/Polycaprolactone Nanocomposite Inks and Final Scaffold Features.
    Kazemi M; Mirzadeh M; Esmaeili H; Kazemi E; Rafienia M; Poursamar SA
    3D Print Addit Manuf; 2024 Feb; 11(1):132-142. PubMed ID: 38389680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Polycaprolactone Nanohydroxyapatite Composites with Tunable Degradability Suitable for Indirect Printing.
    Doyle SE; Henry L; McGennisken E; Onofrillo C; Bella CD; Duchi S; O'Connell CD; Pirogova E
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33477660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics.
    Moghaddaszadeh A; Seddiqi H; Najmoddin N; Abbasi Ravasjani S; Klein-Nulend J
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34670200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acrylated epoxidized soybean oil/hydroxyapatite-based nanocomposite scaffolds prepared by additive manufacturing for bone tissue engineering.
    Mondal D; Srinivasan A; Comeau P; Toh YC; Willett TL
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111400. PubMed ID: 33255003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printability of Silk/Hydroxyapatite Composites for Microprosthetic Applications.
    Milazzo M; Fitzpatrick V; Owens CE; Carraretto IM; McKinley GH; Kaplan DL; Buehler MJ
    ACS Biomater Sci Eng; 2023 Mar; 9(3):1285-1295. PubMed ID: 36857509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique.
    Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S
    J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing.
    Teoh XY; Zhang B; Belton P; Chan SY; Qi S
    Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane.
    Hassan MI; Sultana N
    3 Biotech; 2017 Aug; 7(4):249. PubMed ID: 28714045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced In Vitro Biocompatible Polycaprolactone/Nano-Hydroxyapatite Scaffolds with Near-Field Direct-Writing Melt Electrospinning Technology.
    Chen Z; Liu Y; Huang J; Wang H; Hao M; Hu X; Qian X; Fan J; Yang H; Yang B
    J Funct Biomater; 2022 Sep; 13(4):. PubMed ID: 36278630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Drug-Eluting Nano-Hydroxylapatite Filled Polycaprolactone Nanocomposites Using Solution-Extrusion 3D Printing Technique.
    Chou PY; Chou YC; Lai YH; Lin YT; Lu CJ; Liu SJ
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of mechanical and antibacterial properties of porous nHA scaffolds by fluorinated graphene oxide.
    Xu Z; Li Y; Xu D; Li L; Xu Y; Chen L; Liu Y; Sun J
    RSC Adv; 2022 Sep; 12(39):25405-25414. PubMed ID: 36199313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering.
    Wang F; Tankus EB; Santarella F; Rohr N; Sharma N; Märtin S; Michalscheck M; Maintz M; Cao S; Thieringer FM
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds.
    Rajabi M; Cabral JD; Saunderson S; Gould M; Ali MA
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37699400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.
    Kim HW; Knowles JC; Kim HE
    Biomaterials; 2004; 25(7-8):1279-87. PubMed ID: 14643602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.