These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38389680)

  • 21. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.
    Kim HW; Knowles JC; Kim HE
    Biomaterials; 2004; 25(7-8):1279-87. PubMed ID: 14643602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds.
    Tian L; Zhang Z; Tian B; Zhang X; Wang N
    RSC Adv; 2020 Jan; 10(8):4805-4816. PubMed ID: 35495239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing.
    Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques.
    Zimmerling A; Yazdanpanah Z; Cooper DML; Johnston JD; Chen X
    Biomater Res; 2021 Jan; 25(1):3. PubMed ID: 33499957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheological Behavior and Printability Study of Tri-Calcium Phosphate Ceramic Inks for Direct Ink Writing Method.
    Paul D L B; Praveen AS; Čepová L; Elangovan M
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms.
    Zhang B; Belton P; Teoh XY; Gleadall A; Bibb R; Qi S
    J Mater Chem B; 2023 Dec; 12(1):131-144. PubMed ID: 38050731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Triethyleneglycol dimethacrylate addition improves the 3D-printability and construct properties of a GelMA-nHA composite system towards tissue engineering applications.
    Comeau PA; Willett TL
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110937. PubMed ID: 32409083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.
    Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Oil Content on the Printability of Coconut Cream.
    Lee CP; Hoo JY; Hashimoto M
    Int J Bioprint; 2021; 7(2):354. PubMed ID: 33997437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Printing of Polycaprolactone/Nano-Hydroxyapatite Composite Scaffolds with a Pore Size of 300/500 µm is Histocompatible and Promotes Osteogenesis Using Rabbit Cortical Bone Marrow Stem Cells.
    Yang Y; Qiu B; Zhou Z; Hu C; Li J; Zhou C
    Ann Transplant; 2023 Oct; 28():e940365. PubMed ID: 37904328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development, processing and characterization of Polycaprolactone/Nano-Hydroxyapatite/Chitin-Nano-Whisker nanocomposite filaments for additive manufacturing of bone tissue scaffolds.
    Karimipour-Fard P; Jeffrey MP; JonesTaggart H; Pop-Iliev R; Rizvi G
    J Mech Behav Biomed Mater; 2021 Aug; 120():104583. PubMed ID: 34062373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method.
    Lu L; Zhang Q; Wootton DM; Chiou R; Li D; Lu B; Lelkes PI; Zhou J
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):145-54. PubMed ID: 24425377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rheological insights into 3D printing of drug products: Drug nanocrystal-poloxamer gels for semisolid extrusion.
    Junnila A; Mortier L; Arbiol A; Harju E; Tomberg T; Hirvonen J; Viitala T; Karttunen AP; Peltonen L
    Int J Pharm; 2024 Apr; 655():124070. PubMed ID: 38554740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved 3D Printing and Cell Biology Characterization of Inorganic-Filler Containing Alginate-Based Composites for Bone Regeneration: Particle Shape and Effective Surface Area Are the Dominant Factors for Printing Performance.
    Bednarzig V; Schrüfer S; Schneider TC; Schubert DW; Detsch R; Boccaccini AR
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing.
    Lu Y; Rai R; Nitin N
    Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of mineralization on porous titanium surface by filling with nano-hydroxyapatite particles fabricated with a vacuum spray method.
    Xu J; Aoki H; Kasugai S; Otsuka M
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110772. PubMed ID: 32279766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends.
    Ghorbani FM; Kaffashi B; Shokrollahi P; Akhlaghi S; Hedenqvist MS
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():980-989. PubMed ID: 26652456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of highly ordered willemite/PCL bone scaffolds by 3D printing: Nanostructure effects on compressive strength and in vitro behavior.
    Yahay Z; Moein Farsani N; Mirhadi M; Tavangarian F
    J Mech Behav Biomed Mater; 2023 Aug; 144():105996. PubMed ID: 37392603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.