BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38389685)

  • 1. Influence of Addition of Ti Particles and Processing Condition on Microstructure and Properties of Selectively Laser-Melted Invar 36 Alloy.
    Liu H; Pan X; Sun P; Liu Y; Qiu C
    3D Print Addit Manuf; 2024 Feb; 11(1):24-39. PubMed ID: 38389685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal expansion coefficients in Invar processed by selective laser melting.
    Harrison NJ; Todd I; Mumtaz K
    J Mater Sci; 2017; 52(17):10517-10525. PubMed ID: 32025047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Role of ZrN Particles in the Microstructural Development in a Beta Titanium Alloy Processed by Laser Powder Bed Fusion.
    Chen X; Qiu C
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ development of a sandwich microstructure with enhanced ductility by laser reheating of a laser melted titanium alloy.
    Chen X; Qiu C
    Sci Rep; 2020 Sep; 10(1):15870. PubMed ID: 32985532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy via Annealing Heat Treatment.
    Wang D; Wang H; Chen X; Liu Y; Lu D; Liu X; Han C
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.
    Han C; Wang Q; Song B; Li W; Wei Q; Wen S; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2017 Jul; 71():85-94. PubMed ID: 28267662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Manufacturing Defects on Mechanical Behavior of the Laser Powder Bed Fused Invar 36 Alloy: In-Situ X-ray Computed Tomography Studies.
    Yang S; Yang Q; Qu Z; Wei K
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Solidification of Invar Alloy.
    He H; Yao Z; Li X; Xu J
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Heat Treatments on Microstructure and Mechanical Properties of Ti⁻26Nb Alloy Elaborated In Situ by Laser Additive Manufacturing with Ti and Nb Mixed Powder.
    Wei J; Sun H; Zhang D; Gong L; Lin J; Wen C
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30585185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropy in the Tensile Properties of a Selective Laser Melted Ti-5Al-5Mo-5V-1Cr-1Fe Alloy during Aging Treatment.
    Huang H; Zhang T; Chen C; Hosseini SRE; Zhang J; Zhou K
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strengthening of the Fe-Ni Invar Alloy Through Chromium.
    Sui Q; He J; Zhang X; Sun Z; Zhang Y; Wu Y; Zhu Z; Zhang Q; Peng H
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Heat Input on Weld Microstructure and Properties in Keyhole TIG Welding of Invar 36 Alloy.
    Liu H; Lv S; Xuan Y; Oliveira JP; Schell N; Shen J; Deng J; Wang Y; Yang J
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting.
    Zhao D; Han C; Li J; Liu J; Wei Q
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110784. PubMed ID: 32279779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropic thermal expansion and cooperative Invar and anti-Invar effects in mn alloys.
    Yokoyama T; Eguchi K
    Phys Rev Lett; 2013 Feb; 110(7):075901. PubMed ID: 25166383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and Mechanical Properties of Carbides Reinforced Nickel Matrix Alloy Prepared by Selective Laser Melting.
    Xia T; Wang R; Bi Z; Wang R; Zhang P; Sun G; Zhang J
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research Status and Prospect of Additive Manufactured Nickel-Titanium Shape Memory Alloys.
    Wen S; Gan J; Li F; Zhou Y; Yan C; Shi Y
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural Evolution, Mechanical Properties, and Preosteoblast Cell Response of a Post-Processing-Treated TNT5Zr β Ti Alloy Manufactured via Selective Laser Melting.
    Kong W; Cox SC; Lu Y; Villapun V; Xiao X; Ma W; Liu M; Attallah MM
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2336-2348. PubMed ID: 35537190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Microstructure and Mechanical Properties of a New Modified Cast and Laser-Melted AA7075 Alloy.
    Khalil AM; Loginova IS; Pozdniakov AV; Mosleh AO; Solonin AN
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31635182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of β-type TiNbZrTa alloys fabricated by laser powder bed fusion.
    Luo X; Yang C; Li RY; Wang H; Lu HZ; Song T; Ma HW; Li DD; Gebert A; Li YY
    Biomater Adv; 2022 Feb; 133():112625. PubMed ID: 35523650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Thermal Cycle on Microstructure Evolution and Mechanical Properties of Selective Laser Melted Low-Alloy Steel.
    Kang X; Dong S; Wang H; Yan S; Liu X; Ren H
    Materials (Basel); 2019 Nov; 12(21):. PubMed ID: 31690010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.