These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38389723)

  • 1. Kinetics of extracting valuable components from Ti-bearing blast furnace slag by acidolysis with sulphuric acid.
    Wang Y; Gao X; He S; Guo J
    Front Chem; 2024; 12():1369937. PubMed ID: 38389723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting.
    Zhou L; Peng T; Sun H; Wang S
    RSC Adv; 2022 Dec; 12(54):34990-35001. PubMed ID: 36540258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag.
    Li Y; Liu L; Guo M; Zhang M
    J Environ Sci (China); 2016 Sep; 47():14-22. PubMed ID: 27593268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti-bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling.
    Zhang Y; Lei Y; Ma W; Ren Y
    Waste Manag; 2023 Feb; 157():36-46. PubMed ID: 36521299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach for simultaneous recycling of Ti-bearing blast furnace slag, diamond wire saw Si powder, and Al alloy scrap for preparing TiSi
    Zhang Y; Lei Y; Ma W; Zhai C; Shi Z; Ren Y
    J Hazard Mater; 2022 Apr; 427():127905. PubMed ID: 34862105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese-cerium oxide (MnO
    Xu Y; Liu R; Ye F; Jia F; Ji L
    J Air Waste Manag Assoc; 2017 Aug; 67(8):899-909. PubMed ID: 28287904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag.
    Fan G; Wang M; Dang J; Zhang R; Lv Z; He W; Lv X
    Waste Manag; 2021 Feb; 120():626-634. PubMed ID: 33176939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and kinetic investigations of PO3-4 adsorption on blast furnace slag.
    Oguz E
    J Colloid Interface Sci; 2005 Jan; 281(1):62-7. PubMed ID: 15567381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Acidity Coefficient on the Crystallization Properties and Viscosity of Modified Blast Furnace Slag for Mineral Wool Production.
    Tian T; Jin X; Zhang Y; Long Y; Kou X; Yang J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of scandium and neodymium from blast furnace slag using acid baking-water leaching.
    Kim J; Azimi G
    RSC Adv; 2020 Aug; 10(53):31936-31946. PubMed ID: 35518186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Oily Sludge Treatment with Molten Blast Furnace Slag on the Mineral Phase Reconstruction of Water-Quenched Slag Properties.
    Qin Y; Zhang K; Wu X; Ling Q; Hu J; Li X; Liu H
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detoxication and recycling of chromium slag and C-bearing dust via composite agglomeration process (CAP)-blast furnace method.
    Tu Y; Su Z; Zhang Y; Jiang T
    Waste Manag; 2023 Sep; 171():227-236. PubMed ID: 37666148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH
    Zheng F; Guo Y; Qiu G; Chen F; Wang S; Sui Y; Jiang T; Yang L
    J Hazard Mater; 2018 Feb; 344():490-498. PubMed ID: 29096260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Characteristics and Cementitious Behavior of Magnesium Slag in Comparison with Granulated Blast Furnace Slag.
    Lu P; Zhao Y; Zhang N; Wang Y; Zhang J; Zhang Y; Liu X
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-Removal of Fe/V Impurity in H
    Yang F; Peng Q; Wang J; Xiang L
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Role of GGBS and ACBFS Blast Furnace Slag at 90 Days for Application in Rigid Concrete Pavements.
    Nicula LM; Manea DL; Simedru D; Cadar O; Dragomir ML; Ardelean I; Corbu O
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of CaO and MgO on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Powder.
    Feng S; Zhu J; Wang R; Qu Z; Song L; Wang H
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium recovery from ferrochrome slag: kinetics and possible use in a circular economy.
    Moyo LB; Simate GS; Mamvura TA
    Heliyon; 2022 Dec; 8(12):e12176. PubMed ID: 36578389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable Synthesis of a Porous Micro Si/Si-Ti Alloy Anode for Lithium-Ion Battery from Recovery of Titanium-Blast Furnace Slag.
    Liu Y; Zhong Y; Zeng Z; Zhang P; Zhang H; Zhang Z; Gao F; Ma X; Terrones M; Wang Y; Wang Y
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54539-54549. PubMed ID: 37964444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NaA zeolite derived from blast furnace slag: its application for ammonium removal.
    Guo H; Tang L; Yan B; Wan K; Li P
    Water Sci Technol; 2017 Sep; 76(5-6):1140-1149. PubMed ID: 28876255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.