BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38389852)

  • 1. MAGL protects against renal fibrosis through inhibiting tubular cell lipotoxicity.
    Zhou S; Ling X; Zhu J; Liang Y; Feng Q; Xie C; Li J; Chen Q; Chen S; Miao J; Zhang M; Li Z; Shen W; Li X; Wu Q; Wang X; Liu R; Wang C; Hou FF; Kong Y; Liu Y; Zhou L
    Theranostics; 2024; 14(4):1583-1601. PubMed ID: 38389852
    [No Abstract]   [Full Text] [Related]  

  • 2. Vitexin attenuates chronic kidney disease by inhibiting renal tubular epithelial cell ferroptosis via NRF2 activation.
    Song J; Wang H; Sheng J; Zhang W; Lei J; Gan W; Cai F; Yang Y
    Mol Med; 2023 Oct; 29(1):147. PubMed ID: 37891461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Downregulation of fatty acid oxidation led by Hilpda increases G2/M arrest/delay-induced kidney fibrosis.
    Liu L; Liu T; Jia R; Zhang L; Lv Z; He Z; Qu Y; Sun S; Tai F
    Biochim Biophys Acta Mol Basis Dis; 2023 Jun; 1869(5):166701. PubMed ID: 36990128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fisetin ameliorates fibrotic kidney disease in mice via inhibiting ACSL4-mediated tubular ferroptosis.
    Wang B; Yang LN; Yang LT; Liang Y; Guo F; Fu P; Ma L
    Acta Pharmacol Sin; 2024 Jan; 45(1):150-165. PubMed ID: 37696989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Akt1 is involved in renal fibrosis and tubular apoptosis in a murine model of acute kidney injury-to-chronic kidney disease transition.
    Kim IY; Song SH; Seong EY; Lee DW; Bae SS; Lee SB
    Exp Cell Res; 2023 Mar; 424(2):113509. PubMed ID: 36773738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CXC Chemokine Receptor 2 Accelerates Tubular Cell Senescence and Renal Fibrosis
    Meng P; Huang J; Ling X; Zhou S; Wei J; Zhu M; Miao J; Shen W; Li J; Ye H; Niu H; Zhang Y; Zhou L
    Front Cell Dev Biol; 2022; 10():862675. PubMed ID: 35592244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of monoacylglycerol lipase, an anti-inflammatory and antifibrogenic strategy in the liver.
    Habib A; Chokr D; Wan J; Hegde P; Mabire M; Siebert M; Ribeiro-Parenti L; Le Gall M; Lettéron P; Pilard N; Mansouri A; Brouillet A; Tardelli M; Weiss E; Le Faouder P; Guillou H; Cravatt BF; Moreau R; Trauner M; Lotersztajn S
    Gut; 2019 Mar; 68(3):522-532. PubMed ID: 30301768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Akt1 in renal fibrosis and tubular dedifferentiation during the progression of acute kidney injury to chronic kidney disease.
    Kim IY; Park YK; Song SH; Seong EY; Lee DW; Bae SS; Lee SB
    Korean J Intern Med; 2021 Jul; 36(4):962-974. PubMed ID: 33322851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twist1 downregulation of PGC-1α decreases fatty acid oxidation in tubular epithelial cells, leading to kidney fibrosis.
    Liu L; Ning X; Wei L; Zhou Y; Zhao L; Ma F; Bai M; Yang X; Wang D; Sun S
    Theranostics; 2022; 12(8):3758-3775. PubMed ID: 35664054
    [No Abstract]   [Full Text] [Related]  

  • 10. Pentraxin 3 plays a key role in tubular cell senescence and renal fibrosis through inducing β-catenin signaling.
    Luo P; Zhang H; Liang Y; Li X; Wen Z; Xia C; Lan X; Yang Y; Xiong Y; Huang J; Ling X; Zhou S; Miao J; Shen W; Hou FF; Liu Y; Zhou L; Liang M
    Biochim Biophys Acta Mol Basis Dis; 2023 Oct; 1869(7):166807. PubMed ID: 37453582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-X-C chemokine receptor type 4 promotes tubular cell senescence and renal fibrosis through β-catenin-inhibited fatty acid oxidation.
    Wu Q; Chen Q; Xu D; Wang X; Ye H; Li X; Xiong Y; Li J; Zhou S; Miao J; Shen W; Liu Y; Niu H; Tang Y; Zhou L
    J Cell Mol Med; 2024 Feb; 28(3):e18075. PubMed ID: 38213100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells.
    Miao J; Huang J; Luo C; Ye H; Ling X; Wu Q; Shen W; Zhou L
    Physiol Rep; 2021 Jan; 9(2):e14696. PubMed ID: 33463897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective role of kallistatin in renal fibrosis via modulation of Wnt/β-catenin signaling.
    Yiu WH; Li Y; Lok SWY; Chan KW; Chan LYY; Leung JCK; Lai KN; Tsu JHL; Chao J; Huang XR; Lan HY; Tang SCW
    Clin Sci (Lond); 2021 Feb; 135(3):429-446. PubMed ID: 33458750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis.
    Gong W; Luo C; Peng F; Xiao J; Zeng Y; Yin B; Chen X; Li S; He X; Liu Y; Cao H; Xu J; Long H
    Clin Sci (Lond); 2021 Aug; 135(15):1873-1895. PubMed ID: 34318888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cannabinoid receptor 2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing.
    Zhou S; Ling X; Meng P; Liang Y; Shen K; Wu Q; Zhang Y; Chen Q; Chen S; Liu Y; Zhou L
    J Cell Mol Med; 2021 Sep; 25(18):8957-8972. PubMed ID: 34414658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-emptive pharmacological inhibition of fatty acid-binding protein 4 attenuates kidney fibrosis by reprogramming tubular lipid metabolism.
    Chen Y; Dai Y; Song K; Huang Y; Zhang L; Zhang C; Yan Q; Gao H
    Cell Death Dis; 2021 Jun; 12(6):572. PubMed ID: 34083513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pregnane X receptor activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/β-catenin signaling.
    Ming WH; Luan ZL; Yao Y; Liu HC; Hu SY; Du CX; Zhang C; Zhao YH; Huang YZ; Sun XW; Qiao RF; Xu H; Guan YF; Zhang XY
    Acta Pharmacol Sin; 2023 Oct; 44(10):2075-2090. PubMed ID: 37344564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubular cell transcriptional intermediary factor 1γ deficiency exacerbates kidney injury-induced tubular cell polyploidy and fibrosis.
    Yuan C; Jin G; Li P; Wang W; Ge C; Pan Y; Zhang Q; Mo J; Kuang D; Liu L; Zhang X; Liang H; Zhang W; Tang X; Li Z; Liu J; Xu G; Chen X; Ding ZY; Zhang B
    Kidney Int; 2023 Oct; 104(4):769-786. PubMed ID: 37482091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IKKα aggravates renal fibrogenesis by positively regulating the Wnt/β-catenin pathway.
    Zhang H; Pan B; Huang W; Ma M; Zhang F; Jiang L; Qian C; Wan X; Cao C
    Immunology; 2023 Jan; 168(1):120-134. PubMed ID: 36053796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis.
    Chen Y; Yan Q; Lv M; Song K; Dai Y; Huang Y; Zhang L; Zhang C; Gao H
    Cell Death Dis; 2020 Nov; 11(11):994. PubMed ID: 33219209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.