BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38390938)

  • 1. Cardiomyocyte-specific deletion of GCN5L1 reduces lysine acetylation and attenuates diastolic dysfunction in aged mice by improving cardiac fatty acid oxidation.
    Stewart JE; Crawford JM; Mullen WE; Jacques A; Stoner MW; Scott I; Thapa D
    Biochem J; 2024 Mar; 481(6):423-436. PubMed ID: 38390938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling.
    Alrob OA; Sankaralingam S; Ma C; Wagg CS; Fillmore N; Jaswal JS; Sack MN; Lehner R; Gupta MP; Michelakis ED; Padwal RS; Johnstone DE; Sharma AM; Lopaschuk GD
    Cardiovasc Res; 2014 Sep; 103(4):485-97. PubMed ID: 24966184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA.
    Thapa D; Wu K; Stoner MW; Xie B; Zhang M; Manning JR; Lu Z; Li JH; Chen Y; Gucek M; Playford MP; Mehta NN; Harmon D; O'Doherty RM; Jurczak MJ; Sack MN; Scott I
    J Biol Chem; 2018 Nov; 293(46):17676-17684. PubMed ID: 30323061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart.
    Fukushima A; Alrob OA; Zhang L; Wagg CS; Altamimi T; Rawat S; Rebeyka IM; Kantor PF; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2016 Aug; 311(2):H347-63. PubMed ID: 27261364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GCN5L1 controls renal lipotoxicity through regulating acetylation of fatty acid oxidation enzymes.
    Lv T; Hu Y; Ma Y; Zhen J; Xin W; Wan Q
    J Physiol Biochem; 2019 Nov; 75(4):597-606. PubMed ID: 31760589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet.
    Thapa D; Manning JR; Stoner MW; Zhang M; Xie B; Scott I
    Sci Rep; 2020 Jun; 10(1):10665. PubMed ID: 32606301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GCN5L1 impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation.
    Thapa D; Bugga P; Mushala BAS; Manning JR; Stoner MW; McMahon B; Zeng X; Cantrell PS; Yates N; Xie B; Edmunds LR; Jurczak MJ; Scott I
    Physiol Rep; 2022 Aug; 10(15):e15415. PubMed ID: 35924321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart.
    Vazquez EJ; Berthiaume JM; Kamath V; Achike O; Buchanan E; Montano MM; Chandler MP; Miyagi M; Rosca MG
    Cardiovasc Res; 2015 Sep; 107(4):453-65. PubMed ID: 26101264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress.
    Bugga P; Manning JR; Mushala BAS; Stoner MW; Sembrat J; Scott I
    Cell Signal; 2024 Apr; 116():111065. PubMed ID: 38281616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.
    Fukushima A; Lopaschuk GD
    Biochim Biophys Acta; 2016 Dec; 1862(12):2211-2220. PubMed ID: 27479696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased fatty acid oxidation enzyme activity in the hearts of mice fed a high fat diet does not correlate with improved cardiac contractile function.
    Thapa D; Manning JR; Mushala BAS; Stoner MW; Zhang M; Scott I
    Curr Res Physiol; 2020 Dec; 3():44-49. PubMed ID: 34746819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.
    Abo Alrob O; Lopaschuk GD
    Biochem Soc Trans; 2014 Aug; 42(4):1043-51. PubMed ID: 25110000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylene blue decreases mitochondrial lysine acetylation in the diabetic heart.
    Berthiaume JM; Hsiung CH; Austin AB; McBrayer SP; Depuydt MM; Chandler MP; Miyagi M; Rosca MG
    Mol Cell Biochem; 2017 Aug; 432(1-2):7-24. PubMed ID: 28303408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extreme Acetylation of the Cardiac Mitochondrial Proteome Does Not Promote Heart Failure.
    Davidson MT; Grimsrud PA; Lai L; Draper JA; Fisher-Wellman KH; Narowski TM; Abraham DM; Koves TR; Kelly DP; Muoio DM
    Circ Res; 2020 Sep; 127(8):1094-1108. PubMed ID: 32660330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.
    Bharathi SS; Zhang Y; Mohsen AW; Uppala R; Balasubramani M; Schreiber E; Uechi G; Beck ME; Rardin MJ; Vockley J; Verdin E; Gibson BW; Hirschey MD; Goetzman ES
    J Biol Chem; 2013 Nov; 288(47):33837-33847. PubMed ID: 24121500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPER-dependent estrogen signaling increases cardiac GCN5L1 expression.
    Manning JR; Thapa D; Zhang M; Stoner MW; Sembrat JC; Rojas M; Scott I
    Am J Physiol Heart Circ Physiol; 2022 May; 322(5):H762-H768. PubMed ID: 35245133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mitochondrial long-chain fatty acid oxidation defect leads to transfer RNA uncharging and activation of the integrated stress response in the mouse heart.
    Ranea-Robles P; Pavlova NN; Bender A; Pereyra AS; Ellis JM; Stauffer B; Yu C; Thompson CB; Argmann C; Puchowicz M; Houten SM
    Cardiovasc Res; 2022 Dec; 118(16):3198-3210. PubMed ID: 35388887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation.
    Pougovkina O; te Brinke H; Ofman R; van Cruchten AG; Kulik W; Wanders RJ; Houten SM; de Boer VC
    Hum Mol Genet; 2014 Jul; 23(13):3513-22. PubMed ID: 24516071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.