These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Long-Time-Scale Predictions from Short-Trajectory Data: A Benchmark Analysis of the Trp-Cage Miniprotein. Strahan J; Antoszewski A; Lorpaiboon C; Vani BP; Weare J; Dinner AR J Chem Theory Comput; 2021 May; 17(5):2948-2963. PubMed ID: 33908762 [TBL] [Abstract][Full Text] [Related]
4. On the advantages of exploiting memory in Markov state models for biomolecular dynamics. Cao S; Montoya-Castillo A; Wang W; Markland TE; Huang X J Chem Phys; 2020 Jul; 153(1):014105. PubMed ID: 32640825 [TBL] [Abstract][Full Text] [Related]
6. Dynamic distribution decomposition for single-cell snapshot time series identifies subpopulations and trajectories during iPSC reprogramming. Taylor-King JP; Riseth AN; Macnair W; Claassen M PLoS Comput Biol; 2020 Jan; 16(1):e1007491. PubMed ID: 31923173 [TBL] [Abstract][Full Text] [Related]
7. The spatiotemporal master equation: Approximation of reaction-diffusion dynamics via Markov state modeling. Winkelmann S; Schütte C J Chem Phys; 2016 Dec; 145(21):214107. PubMed ID: 28799405 [TBL] [Abstract][Full Text] [Related]
8. Computing long time scale biomolecular dynamics using quasi-stationary distribution kinetic Monte Carlo (QSD-KMC). Agarwal A; Hengartner NW; Gnanakaran S; Voter AF J Chem Phys; 2019 Aug; 151(7):074109. PubMed ID: 31438708 [TBL] [Abstract][Full Text] [Related]
9. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. Salis H; Kaznessis Y J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306 [TBL] [Abstract][Full Text] [Related]
10. Building insightful, memory-enriched models to capture long-time biochemical processes from short-time simulations. Dominic AJ; Sayer T; Cao S; Markland TE; Huang X; Montoya-Castillo A Proc Natl Acad Sci U S A; 2023 Mar; 120(12):e2221048120. PubMed ID: 36920924 [TBL] [Abstract][Full Text] [Related]
11. WyNDA: A method to discover mathematical models of dynamical systems from data. Hasan A MethodsX; 2024 Jun; 12():102625. PubMed ID: 38425498 [TBL] [Abstract][Full Text] [Related]
12. Marginal process framework: A model reduction tool for Markov jump processes. Bronstein L; Koeppl H Phys Rev E; 2018 Jun; 97(6-1):062147. PubMed ID: 30011601 [TBL] [Abstract][Full Text] [Related]
14. Dynamical coring of Markov state models. Nagel D; Weber A; Lickert B; Stock G J Chem Phys; 2019 Mar; 150(9):094111. PubMed ID: 30849879 [TBL] [Abstract][Full Text] [Related]
15. Modeling non-Markovian data using Markov state and Langevin models. Lickert B; Stock G J Chem Phys; 2020 Dec; 153(24):244112. PubMed ID: 33380115 [TBL] [Abstract][Full Text] [Related]
16. Variational cross-validation of slow dynamical modes in molecular kinetics. McGibbon RT; Pande VS J Chem Phys; 2015 Mar; 142(12):124105. PubMed ID: 25833563 [TBL] [Abstract][Full Text] [Related]
17. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions. Grima R J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359 [TBL] [Abstract][Full Text] [Related]
18. A finite state projection algorithm for the stationary solution of the chemical master equation. Gupta A; Mikelson J; Khammash M J Chem Phys; 2017 Oct; 147(15):154101. PubMed ID: 29055349 [TBL] [Abstract][Full Text] [Related]
19. MasterMSM: A Package for Constructing Master Equation Models of Molecular Dynamics. de Sancho D; Aguirre A J Chem Inf Model; 2019 Sep; 59(9):3625-3629. PubMed ID: 31423789 [TBL] [Abstract][Full Text] [Related]
20. Mathematical modeling of spatio-temporal population dynamics and application to epidemic spreading. Winkelmann S; Zonker J; Schütte C; Conrad ND Math Biosci; 2021 Jun; 336():108619. PubMed ID: 33887314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]