BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 38391026)

  • 1. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling.
    Vlasova AD; Bukhalovich SM; Bagaeva DF; Polyakova AP; Ilyinsky NS; Nesterov SV; Tsybrov FM; Bogorodskiy AO; Zinovev EV; Mikhailov AE; Vlasov AV; Kuklin AI; Borshchevskiy VI; Bamberg E; Uversky VN; Gordeliy VI
    Chem Soc Rev; 2024 Apr; 53(7):3327-3349. PubMed ID: 38391026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances and prospects of rhodopsin-based optogenetics in plant research.
    Zhou Y; Ding M; Nagel G; Konrad KR; Gao S
    Plant Physiol; 2021 Oct; 187(2):572-589. PubMed ID: 35237820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Bergs A; Henss T; Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2022; 2468():89-115. PubMed ID: 35320562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins.
    Inoue K
    Adv Exp Med Biol; 2021; 1293():89-126. PubMed ID: 33398809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic cytosol acidification of mammalian cells using an inward proton-pumping rhodopsin.
    Vlasova A; Polyakova A; Gromova A; Dolotova S; Bukhalovich S; Bagaeva D; Bondarev N; Tsybrov F; Kovalev K; Mikhailov A; Sidorov D; Bogorodskiy A; Ilyinsky N; Kuklin A; Vlasov A; Borshchevskiy V; Ivanovich V
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124949. PubMed ID: 37224908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial Rhodopsins as Multi-functional Photoreactive Membrane Proteins for Optogenetics.
    Nakao S; Kojima K; Sudo Y
    Biol Pharm Bull; 2021; 44(10):1357-1363. PubMed ID: 34602542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic Tools for Subcellular Applications in Neuroscience.
    Rost BR; Schneider-Warme F; Schmitz D; Hegemann P
    Neuron; 2017 Nov; 96(3):572-603. PubMed ID: 29096074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. History and Perspectives of Ion-Transporting Rhodopsins.
    Kandori H
    Adv Exp Med Biol; 2021; 1293():3-19. PubMed ID: 33398804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Biology of Microbial Rhodopsins.
    Engelhard M
    Methods Mol Biol; 2022; 2501():53-69. PubMed ID: 35857222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience.
    Piatkevich KD; Boyden ES
    Q Rev Biophys; 2023 Oct; 57():e1. PubMed ID: 37831008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel pH-Sensitive Microbial Rhodopsin from Sphingomonas paucimobilis.
    Maliar N; Okhrimenko IS; Petrovskaya LE; Alekseev AA; Kovalev KV; Soloviov DV; Popov PA; Rokitskaya TI; Antonenko YN; Zabelskii DV; Dolgikh DA; Kirpichnikov MP; Gordeliy VI
    Dokl Biochem Biophys; 2020 Nov; 495(1):342-346. PubMed ID: 33368048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetics Comes of Age: Novel Inhibitory Light-Gated Anionic Channels Allow Efficient Silencing of Neural Function.
    Peralvárez-Marín A; Garriga P
    Chembiochem; 2016 Feb; 17(3):204-6. PubMed ID: 26670414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Algal rhodopsins encoding diverse signal sequence holds potential for expansion of organelle optogenetics.
    Sushmita K; Sharma S; Singh Kaushik M; Kateriya S
    Biophys Physicobiol; 2023 Mar; 20(Supplemental):e201008. PubMed ID: 38362319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic reprogramming of carbon metabolism using light-powering microbial proton pump systems.
    Toya Y; Hirono-Hara Y; Hirayama H; Kamata K; Tanaka R; Sano M; Kitamura S; Otsuka K; Abe-Yoshizumi R; Tsunoda SP; Kikukawa H; Kandori H; Shimizu H; Matsuda F; Ishii J; Hara KY
    Metab Eng; 2022 Jul; 72():227-236. PubMed ID: 35346842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological Characterization of Microbial Rhodopsins by Patch-Clamp Experiments.
    Mager T
    Methods Mol Biol; 2022; 2501():277-288. PubMed ID: 35857233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NEUROSCIENCE. Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.
    Govorunova EG; Sineshchekov OA; Janz R; Liu X; Spudich JL
    Science; 2015 Aug; 349(6248):647-50. PubMed ID: 26113638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications.
    Govorunova EG; Sineshchekov OA; Li H; Spudich JL
    Annu Rev Biochem; 2017 Jun; 86():845-872. PubMed ID: 28301742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.