BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38391058)

  • 1. A Hybrid Redox-Mediated Zinc-Air Fuel Cell for Scalable and Sustained Power Generation.
    Song Y; Xia L; Salla M; Xi S; Fu W; Wang W; Gao M; Huang S; Huang S; Wang X; Yu X; Niu T; Zhang Y; Wang S; Han M; Ni M; Wang Q; Zhang H
    Angew Chem Int Ed Engl; 2024 Apr; 63(16):e202314796. PubMed ID: 38391058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives.
    Nazir G; Rehman A; Lee JH; Kim CH; Gautam J; Heo K; Hussain S; Ikram M; AlObaid AA; Lee SY; Park SJ
    Nanomicro Lett; 2024 Feb; 16(1):138. PubMed ID: 38421464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. I
    Cui M; Ma N; Lei H; Liu Y; Ling W; Chen S; Wang J; Li H; Li Z; Fan J; Huang Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303845. PubMed ID: 37114563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Architectures of Air Electrodes in Zinc-Air Batteries and Hydrogen Fuel Cells.
    Li L; Tang X; Wu B; Huang B; Yuan K; Chen Y
    Adv Mater; 2024 Mar; 36(13):e2308326. PubMed ID: 37823716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in zinc-air batteries: self-standing inorganic nanoporous metal films as air cathodes.
    Chang J; Yang Y
    Chem Commun (Camb); 2023 May; 59(39):5823-5838. PubMed ID: 37096450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rechargeable Zinc-Air Batteries: Advances, Challenges, and Prospects.
    Lv XW; Wang Z; Lai Z; Liu Y; Ma T; Geng J; Yuan ZY
    Small; 2024 Jan; 20(4):e2306396. PubMed ID: 37712176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic-self-catalysis as an accelerated air-cathode for rechargeable near-neutral Zn-air batteries with ultrahigh energy efficiency.
    Zhang T; Lim XF; Zhang S; Zheng J; Liu X; Lee JY
    Mater Horiz; 2023 Jul; 10(8):2958-2967. PubMed ID: 37166133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Cycling Performance of Rechargeable Zinc-Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive.
    Khezri R; Hosseini S; Lahiri A; Motlagh SR; Nguyen MT; Yonezawa T; Kheawhom S
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33023274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Monitored (N, O)-Doping of Flexible Vertical Graphene Films with High-Flux Plasma Enhanced Chemical Vapor Deposition for Remarkable Metal-Free Redox Catalysis Essential to Alkaline Zinc-Air Batteries.
    Wu Z; Yu Y; Zhang G; Zhang Y; Guo R; Li L; Zhao Y; Wang Z; Shen Y; Shao G
    Adv Sci (Weinh); 2022 May; 9(13):e2200614. PubMed ID: 35246956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rechargeable Zinc-Air Batteries with an Ultralarge Discharge Capacity per Cycle and an Ultralong Cycle Life.
    Zhong X; Shao Y; Chen B; Li C; Sheng J; Xiao X; Xu B; Li J; Cheng HM; Zhou G
    Adv Mater; 2023 Jul; 35(30):e2301952. PubMed ID: 37067852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives.
    Dong F; Wu M; Chen Z; Liu X; Zhang G; Qiao J; Sun S
    Nanomicro Lett; 2021 Dec; 14(1):36. PubMed ID: 34918185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.
    Kundu A; Mallick S; Ghora S; Raj CR
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40172-40199. PubMed ID: 34424683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-based composites for rechargeable zinc-air batteries: A mini review.
    Liu Y; Lu J; Xu S; Zhang W; Gao D
    Front Chem; 2022; 10():1074984. PubMed ID: 36465872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives.
    Fu J; Cano ZP; Park MG; Yu A; Fowler M; Chen Z
    Adv Mater; 2017 Feb; 29(7):. PubMed ID: 27892635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the bifunctional activity of CoSe
    Huang Y; Liu Y; Deng Y; Zhang J; He B; Sun J; Yang Z; Zhou W; Zhao L
    J Colloid Interface Sci; 2022 Nov; 625():839-849. PubMed ID: 35772210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Dendrite-Resistant Zinc-Air Battery.
    Huang S; Li H; Pei P; Wang K; Xiao Y; Zhang C; Chen C
    iScience; 2020 Jun; 23(6):101169. PubMed ID: 32480127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Substrate-Induced Fabrication of Active Free-Standing Nanocarbon Film as Air Cathode in Rechargeable Zinc-Air Batteries.
    Yan D; Xia C; He C; Liu Q; Chen G; Guo W; Xia BY
    Small; 2022 Feb; 18(7):e2106606. PubMed ID: 34874623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface Coordination Stabilizing Reversible Redox of Zinc for High-Performance Zinc-Iodine Batteries.
    Chen S; Chen Q; Ma J; Wang J; Hui KS; Zhang J
    Small; 2022 Jun; 18(22):e2200168. PubMed ID: 35523732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wood-Derived Integral Air Electrode for Enhanced Interfacial Electrocatalysis in Rechargeable Zinc-Air Battery.
    Cui X; Liu Y; Han G; Cao M; Han L; Zhou B; Mehdi S; Wu X; Li B; Jiang J
    Small; 2021 Sep; 17(38):e2101607. PubMed ID: 34365727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dealloying-Derived Porous Spinel Oxide for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries: Promotion of Activity Via Hereditary Al-Doping.
    Wang M; Long Y; Zhao H; Zhang W; Wang L; Dong R; Hou H; Wang H; Wang X
    ChemSusChem; 2022 Nov; 15(21):e202201518. PubMed ID: 36042569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.