These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38391058)

  • 21. Wood-Derived Integral Air Electrode for Enhanced Interfacial Electrocatalysis in Rechargeable Zinc-Air Battery.
    Cui X; Liu Y; Han G; Cao M; Han L; Zhou B; Mehdi S; Wu X; Li B; Jiang J
    Small; 2021 Sep; 17(38):e2101607. PubMed ID: 34365727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FeCo Nanoparticles Encapsulated in N-Doped Carbon Nanotubes Coupled with Layered Double (Co, Fe) Hydroxide as an Efficient Bifunctional Catalyst for Rechargeable Zinc-Air Batteries.
    Zhang T; Bian J; Zhu Y; Sun C
    Small; 2021 Nov; 17(44):e2103737. PubMed ID: 34553487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.
    Li Y; Gong M; Liang Y; Feng J; Kim JE; Wang H; Hong G; Zhang B; Dai H
    Nat Commun; 2013; 4():1805. PubMed ID: 23651993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioelectrochemical cascade reaction for energy-saving hydrogen production and innovative Zn-air batteries.
    Zhang Y; Zheng Y; Deng H; Long Y; Jiang W; Li C; Li S; Li Z; Li G
    Bioelectrochemistry; 2024 Jun; 157():108666. PubMed ID: 38346369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetric Air Cathode Design for Enhanced Interfacial Electrocatalytic Reactions in High-Performance Zinc-Air Batteries.
    Yu J; Li BQ; Zhao CX; Liu JN; Zhang Q
    Adv Mater; 2020 Mar; 32(12):e1908488. PubMed ID: 32072701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Material design and surface chemistry for advanced rechargeable zinc-air batteries.
    Lee S; Choi J; Kim M; Park J; Park M; Cho J
    Chem Sci; 2022 Jun; 13(21):6159-6180. PubMed ID: 35733905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Dendrite-Free Tin Anode for High-Energy Aqueous Redox Flow Batteries.
    Yao Y; Wang Z; Li Z; Lu YC
    Adv Mater; 2021 Apr; 33(15):e2008095. PubMed ID: 33694199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deeply Rechargeable and Hydrogen-Evolution-Suppressing Zinc Anode in Alkaline Aqueous Electrolyte.
    Zhang Y; Wu Y; You W; Tian M; Huang PW; Zhang Y; Sun Z; Ma Y; Hao T; Liu N
    Nano Lett; 2020 Jun; 20(6):4700-4707. PubMed ID: 32453958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sustainable zinc-air battery chemistry: advances, challenges and prospects.
    Wang Q; Kaushik S; Xiao X; Xu Q
    Chem Soc Rev; 2023 Aug; 52(17):6139-6190. PubMed ID: 37565571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molten salt induced formation of chitosan based carbon nanosheets decorated with CoN
    Zhou Q; Tian Y; Wang M; Lei S; Xiong C
    J Colloid Interface Sci; 2023 Jul; 641():842-852. PubMed ID: 36966573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries.
    Liu JN; Li BQ; Zhao CX; Yu J; Zhang Q
    ChemSusChem; 2020 Mar; 13(6):1529-1536. PubMed ID: 31845530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery.
    Lee DU; Fu J; Park MG; Liu H; Ghorbani Kashkooli A; Chen Z
    Nano Lett; 2016 Mar; 16(3):1794-802. PubMed ID: 26854411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrophobic and Homogeneous Conductive Carbon Matrix for High-Rate Non-Alkaline Zinc-Air Batteries.
    Wang F; Qiu K; Zhang Z; Li X; Cao Y; Wang F
    Small; 2023 Nov; 19(48):e2303151. PubMed ID: 37605323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Redox Flow Battery-Integrated Rechargeable H
    Liu H; Yin Y; Cao X; Cheng H; Xie Y; Wu C
    J Am Chem Soc; 2024 Feb; 146(8):5274-5282. PubMed ID: 38363827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanopore Confinement of Electrocatalysts Optimizing Triple Transport for an Ultrahigh-Power-Density Zinc-Air Fuel Cell with Robust Stability.
    Zhou T; Shan H; Yu H; Zhong C; Ge J; Zhang N; Chu W; Yan W; Xu Q; Wu H; Wu C; Xie Y
    Adv Mater; 2020 Nov; 32(47):e2003251. PubMed ID: 33073405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review.
    Dias GS; Costa JM; Almeida Neto AF
    Adv Colloid Interface Sci; 2023 May; 315():102891. PubMed ID: 37058836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Ultrastable Rechargeable Zinc-Air Battery Using a Janus Superwetting Air Electrode.
    Zhang X; Wang X; Guan Z; Fang J; Sui R; Pei J; Qin Y; Wei D; Zhu W; Zhuang Z
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52849-52856. PubMed ID: 36394544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries.
    Xie X; Zhai Z; Peng L; Zhang J; Shang L; Zhang T
    Sci Bull (Beijing); 2023 Nov; 68(22):2862-2875. PubMed ID: 37884426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Fluorinated Covalent Organic Framework with Accelerated Oxygen Transfer Nanochannels for High-Performance Zinc-Air Batteries.
    Cao Q; Wan L; Xu Z; Kuang W; Liu H; Zhang X; Zhang W; Lu Y; Yao Y; Wang B; Liu K
    Adv Mater; 2023 Apr; 35(17):e2210550. PubMed ID: 36745936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries.
    Chen P; Yuan X; Xia Y; Zhang Y; Fu L; Liu L; Yu N; Huang Q; Wang B; Hu X; Wu Y; van Ree T
    Adv Sci (Weinh); 2021 Jun; 8(11):e2100309. PubMed ID: 34105273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.