These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38391270)

  • 61. Ambient Carbon Dioxide Capture Using Boron-Rich Porous Boron Nitride: A Theoretical Study.
    Li L; Liu Y; Yang X; Yu X; Fang Y; Li Q; Jin P; Tang C
    ACS Appl Mater Interfaces; 2017 May; 9(18):15399-15407. PubMed ID: 28397502
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Screening of Transition Metal Supported on Black Phosphorus as Electrocatalysts for CO
    Zhong W; Yue J; Zhang R; Huang H; Huang H; Shen Z; Jiang L; Xu M; Xia Q; Cao Y
    Inorg Chem; 2024 Jan; 63(2):1035-1045. PubMed ID: 38171367
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Energetics of hexagonal boron nitride nanostructures: edge dependence and truncation effects.
    Fu X; Zhang R
    Nanoscale; 2017 May; 9(20):6734-6740. PubMed ID: 28485444
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Theoretical Insights into Enhancing Catalytic Performance of Al-Cu Alloy for CO
    Lei H; Zhang W; Yang J
    J Phys Chem Lett; 2024 May; 15(21):5643-5653. PubMed ID: 38767198
    [TBL] [Abstract][Full Text] [Related]  

  • 65. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hybrid MXene-Graphene/Hexagonal Boron Nitride Structures: Electronic and Molecular Adsorption Properties.
    Alhajri F; Fadlallah MM; Alkhaldi A; Maarouf AA
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014604
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nitrogen Fixation at the Edges of Boron Nitride Nanomaterials: Synergy of Doping.
    Choutipalli VSK; Esackraj K; Subramanian V
    Front Chem; 2021; 9():799903. PubMed ID: 35127647
    [TBL] [Abstract][Full Text] [Related]  

  • 68. CO oxidation catalyzed by the single Co atom embedded hexagonal boron nitride nanosheet: a DFT-D study.
    Lu Z; Lv P; Liang Y; Ma D; Zhang Y; Zhang W; Yang X; Yang Z
    Phys Chem Chem Phys; 2016 Aug; 18(31):21865-70. PubMed ID: 27436673
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mapping the Catalytic-Space for the Reactivity of Metal-free Boron Nitride with O
    Rawal P; Gupta P
    Chemistry; 2024 Mar; 30(17):e202303371. PubMed ID: 38221895
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dispersing small Ru nanoparticles into boron nitride remodified by reduced graphene oxide for high-efficient electrocatalytic hydrogen evolution reaction.
    Salah A; Ren HD; Al-Ansi N; Tan H; Yu F; Yanchun L; Thamer BM; Al-Salihy A; Zhao L; Li Y
    J Colloid Interface Sci; 2023 Aug; 644():378-387. PubMed ID: 37120886
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of nickel-based electrocatalyst size on electrochemical carbon dioxide reduction: A density functional theory study.
    Wang F; Meng Y; Chen X; Zhang L; Li G; Shen Z; Wang Y; Cao Y
    J Colloid Interface Sci; 2022 Jun; 615():587-596. PubMed ID: 35152078
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced Electrochemical Methanation of Carbon Dioxide at the Single-Layer Hexagonal Boron Nitride/Cu Interfacial Perimeter.
    Chen S; Zhu C; Gu H; Wang L; Qi J; Zhong L; Zhang Z; Yang C; Shi G; Zhao S; Li S; Liu K; Zhang L
    Nano Lett; 2021 May; 21(10):4469-4476. PubMed ID: 33978428
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Heterogeneous Hydrogenation with Hydrogen Spillover Enabled by Nitrogen Vacancies on Boron Nitride-Supported Pd Nanoparticles.
    Zhang Y; Zhan S; Liu K; Qiao M; Liu N; Qin R; Xiao L; You P; Jing W; Zheng N
    Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202217191. PubMed ID: 36573904
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Formation and Dynamics of Electron-Irradiation-Induced Defects in Hexagonal Boron Nitride at Elevated Temperatures.
    Pham T; Gibb AL; Li Z; Gilbert SM; Song C; Louie SG; Zettl A
    Nano Lett; 2016 Nov; 16(11):7142-7147. PubMed ID: 27685639
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Growing sp
    Seitsonen AP; Greber T
    Nanoscale Adv; 2023 Dec; 6(1):268-275. PubMed ID: 38125605
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dual-Function Reaction Center for Simultaneous Activation of CH
    Chen Y; Wang F; Huang Z; Chen J; Han C; Li Q; Cao Y; Zhou Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46694-46702. PubMed ID: 34559508
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Electroreduction of Captured CO
    Kowalski RM; Banerjee A; Yue C; Gracia SG; Cheng D; Morales-Guio CG; Sautet P
    J Am Chem Soc; 2024 Jul; 146(30):20728-20741. PubMed ID: 39037349
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adsorption of water on C sites vacancy defected graphene/h-BN: First-principles study.
    Neupane HK; Adhikari NP
    J Mol Model; 2022 Mar; 28(4):107. PubMed ID: 35355154
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Atomically Dispersed Indium Sites for Selective CO
    Lu P; Tan X; Zhao H; Xiang Q; Liu K; Zhao X; Yin X; Li X; Hai X; Xi S; Wee ATS; Pennycook SJ; Yu X; Yuan M; Wu J; Zhang G; Smith SC; Yin Z
    ACS Nano; 2021 Mar; 15(3):5671-5678. PubMed ID: 33586956
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The Synergistic Effect between Metal and Sulfur Vacancy to Boost CO
    Zhu Q; Gu Y; Wang X; Gu Y; Ma J
    JACS Au; 2024 Jan; 4(1):125-138. PubMed ID: 38274268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.