These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 38391444)

  • 1. Fabrication of Sodium Trimetaphosphate-Based PEDOT:PSS Conductive Hydrogels.
    Reynolds M; Stoy LM; Sun J; Opoku Amponsah PE; Li L; Soto M; Song S
    Gels; 2024 Feb; 10(2):. PubMed ID: 38391444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pure PEDOT:PSS hydrogels.
    Lu B; Yuk H; Lin S; Jian N; Qu K; Xu J; Zhao X
    Nat Commun; 2019 Mar; 10(1):1043. PubMed ID: 30837483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation.
    Won D; Kim J; Choi J; Kim H; Han S; Ha I; Bang J; Kim KK; Lee Y; Kim TS; Park JH; Kim CY; Ko SH
    Sci Adv; 2022 Jun; 8(23):eabo3209. PubMed ID: 35675404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinting of a Cell-Laden Conductive Hydrogel Composite.
    Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics.
    Aggas JR; Abasi S; Phipps JF; Podstawczyk DA; Guiseppi-Elie A
    Biosens Bioelectron; 2020 Nov; 168():112568. PubMed ID: 32905929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
    Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Electrical and Mechanical Characteristics of Conductive PVA/PEDOT:PSS Hydrogel Foams for Soft Strain Sensors.
    Jurin FE; Buron CC; Frau E; Del Rossi S; Schintke S
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 3D printed conductive grooved topography hydrogel combined with electrical stimulation for synergistically enhancing wound healing of dermal fibroblast cells.
    Lee JJ; Ng HY; Lin YH; Liu EW; Lin TJ; Chiu HT; Ho XR; Yang HA; Shie MY
    Biomater Adv; 2022 Nov; 142():213132. PubMed ID: 36215748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Visible-Light 3D Printing of Conductive PEDOT:PSS Hydrogels.
    Lopez-Larrea N; Gallastegui A; Lezama L; Criado-Gonzalez M; Casado N; Mecerreyes D
    Macromol Rapid Commun; 2024 Jan; 45(1):e2300229. PubMed ID: 37357826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEDOT:PSS hydrogels with high conductivity and biocompatibility for
    Yang T; Yang M; Xu C; Yang K; Su Y; Ye Y; Dou L; Yang Q; Ke W; Wang B; Luo Z
    J Mater Chem B; 2023 Apr; 11(14):3226-3235. PubMed ID: 36960662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic Conductive Hydrogels with High Water Content.
    Qian C; Higashigaki T; Asoh TA; Uyama H
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27518-27525. PubMed ID: 32449346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and Biocompatibility of Electroconductive Silk Fibroin/PEDOT: PSS Composites for Corneal Epithelial Regeneration.
    Bhattacharjee P; Ahearne M
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33348815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties.
    Spencer AR; Primbetova A; Koppes AN; Koppes RA; Fenniri H; Annabi N
    ACS Biomater Sci Eng; 2018 May; 4(5):1558-1567. PubMed ID: 33445313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels.
    Xie X; Xu Z; Yu X; Jiang H; Li H; Feng W
    Nat Commun; 2023 Jul; 14(1):4289. PubMed ID: 37463898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Healing, Flexible and Smart 3D Hydrogel Electrolytes Based on Alginate/PEDOT:PSS for Supercapacitor Applications.
    Badawi NM; Bhatia M; Ramesh S; Ramesh K; Kuniyil M; Shaik MR; Khan M; Shaik B; Adil SF
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Patterning of Highly Conductive PEDOT:PSS/Ionic Liquid Hydrogel via Microreactive Inkjet Printing.
    Teo MY; RaviChandran N; Kim N; Kee S; Stuart L; Aw KC; Stringer J
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37069-37076. PubMed ID: 31533420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroconductive Photo-Curable PEGDA-Gelatin/PEDOT:PSS Hydrogels for Prospective Cardiac Tissue Engineering Application.
    Testore D; Zoso A; Kortaberria G; Sangermano M; Chiono V
    Front Bioeng Biotechnol; 2022; 10():897575. PubMed ID: 35814009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes.
    Zhou X; Rajeev A; Subramanian A; Li Y; Rossetti N; Natale G; Lodygensky GA; Cicoira F
    Acta Biomater; 2022 Feb; 139():296-306. PubMed ID: 34365040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-High Electrical Conductivity in Filler-Free Polymeric Hydrogels Toward Thermoelectrics and Electromagnetic Interference Shielding.
    Wang J; Li Q; Li K; Sun X; Wang Y; Zhuang T; Yan J; Wang H
    Adv Mater; 2022 Mar; 34(12):e2109904. PubMed ID: 35064696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.