These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38391508)

  • 1. General and Specific Cytotoxicity of Chimeric Antisense Oligonucleotides in Bacterial Cells and Human Cell Lines.
    Popova KB; Penchovsky R
    Antibiotics (Basel); 2024 Jan; 13(2):. PubMed ID: 38391508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development.
    Pavlova N; Traykovska M; Penchovsky R
    Antibiotics (Basel); 2023 Nov; 12(11):. PubMed ID: 37998809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting SAM-I Riboswitch Using Antisense Oligonucleotide Technology for Inhibiting the Growth of
    Traykovska M; Penchovsky R
    Antibiotics (Basel); 2022 Nov; 11(11):. PubMed ID: 36421306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences.
    Yoshida T; Naito Y; Sasaki K; Uchida E; Sato Y; Naito M; Kawanishi T; Obika S; Inoue T
    Genes Cells; 2018 Jun; 23(6):448-455. PubMed ID: 29667281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense oligonucleotide targeting CD39 improves anti-tumor T cell immunity.
    Kashyap AS; Thelemann T; Klar R; Kallert SM; Festag J; Buchi M; Hinterwimmer L; Schell M; Michel S; Jaschinski F; Zippelius A
    J Immunother Cancer; 2019 Mar; 7(1):67. PubMed ID: 30871609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Combinatorial effects of ST6Gal I siRNA and antisense oligonucleotide-mediated gene silence on metastasis ability of cervical carcinoma cells].
    Yuan TH; Li MY; Li WY; Li H; Jiang ZH
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2007 Mar; 38(2):217-21. PubMed ID: 17441333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-silico study of antisense oligonucleotide antibiotics.
    Chen ES; Ho ES
    PeerJ; 2023; 11():e16343. PubMed ID: 38025700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides.
    Scharner J; Ma WK; Zhang Q; Lin KT; Rigo F; Bennett CF; Krainer AR
    Nucleic Acids Res; 2020 Jan; 48(2):802-816. PubMed ID: 31802121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicology of antisense therapeutics.
    Jason TL; Koropatnick J; Berg RW
    Toxicol Appl Pharmacol; 2004 Nov; 201(1):66-83. PubMed ID: 15519609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxicity of etoposide in cancer cell lines in vitro after BCL-2 and C-RAF gene silencing with antisense oligonucleotides.
    Sypniewski D; Bednarek I; Gałka S; Loch T; Błaszczyk D; Sołtysik D
    Acta Pol Pharm; 2013; 70(1):87-97. PubMed ID: 23610963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of combinations of gapmer antisense oligonucleotides on the target reduction.
    Yanagidaira M; Yoshioka K; Nagata T; Nakao S; Miyata K; Yokota T
    Mol Biol Rep; 2023 Apr; 50(4):3539-3546. PubMed ID: 36787053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway.
    Liang XH; Nichols JG; Hsu CW; Vickers TA; Crooke ST
    Nucleic Acids Res; 2019 Jul; 47(13):6900-6916. PubMed ID: 31165876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel integrated strategy (full length gene targeting) for mRNA accessible site tagging combined with microarray hybridization/RNase H cleavage to screen effective antisense oligonucleotides.
    Sun Y; Duan M; Lin R; Wang D; Li C; Bo X; Wang S
    Mol Vis; 2006 Nov; 12():1364-71. PubMed ID: 17149362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single-cell map of antisense oligonucleotide activity in the brain.
    Mortberg MA; Gentile JE; Nadaf NM; Vanderburg C; Simmons S; Dubinsky D; Slamin A; Maldonado S; Petersen CL; Jones N; Kordasiewicz HB; Zhao HT; Vallabh SM; Minikel EV
    Nucleic Acids Res; 2023 Aug; 51(14):7109-7124. PubMed ID: 37188501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-sensitivity quantification of antisense oligonucleotides for pharmacokinetic characterization.
    Mahajan S; Zhao H; Kovacina K; Lachacz E; Hoxha S; Chan J; Liang M
    Bioanalysis; 2022 May; 14(9):603-613. PubMed ID: 35578971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly effective and long-lasting inhibition of miRNAs with PNA-based antisense oligonucleotides.
    Oh SY; Ju Y; Park H
    Mol Cells; 2009 Oct; 28(4):341-5. PubMed ID: 19812898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development.
    Traykovska M; Popova KB; Penchovsky R
    ACS Synth Biol; 2021 Nov; 10(11):3167-3176. PubMed ID: 34734706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Favorable efficacy and reduced acute neurotoxicity by antisense oligonucleotides with 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine.
    Matsubayashi T; Yoshioka K; Lei Mon SS; Katsuyama M; Jia C; Yamaguchi T; Hara RI; Nagata T; Nakagawa O; Obika S; Yokota T
    Mol Ther Nucleic Acids; 2024 Jun; 35(2):102161. PubMed ID: 38978695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the factors that contribute to on-target specificity of antisense oligonucleotides.
    Lima WF; Vickers TA; Nichols J; Li C; Crooke ST
    PLoS One; 2014; 9(7):e101752. PubMed ID: 25072142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cationic oligonucleotide derivatives and conjugates: A favorable approach for enhanced DNA and RNA targeting oligonucleotides.
    Danielsen MB; Wengel J
    Beilstein J Org Chem; 2021; 17():1828-1848. PubMed ID: 34386102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.