These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38392021)

  • 1. Electrochemical Characterization of Neurotransmitters in a Single Submicron Droplet.
    Park H; Park JH
    Biosensors (Basel); 2024 Feb; 14(2):. PubMed ID: 38392021
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Park H; Park JH
    J Phys Chem Lett; 2020 Dec; 11(23):10250-10255. PubMed ID: 33210920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Analysis of Attoliter Water Droplets in Organic Solutions through Partitioning Equilibrium.
    Moon H; Park JH
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemistry of a single attoliter emulsion droplet in collisions.
    Kim BK; Kim J; Bard AJ
    J Am Chem Soc; 2015 Feb; 137(6):2343-9. PubMed ID: 25616104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing emulsions by observation of single droplet collisions--attoliter electrochemical reactors.
    Kim BK; Boika A; Kim J; Dick JE; Bard AJ
    J Am Chem Soc; 2014 Apr; 136(13):4849-52. PubMed ID: 24641496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporally Resolved Electrochemical Interrogation for Stochastic Collision Dynamics of Electrogenerated Single Polybromide Droplets.
    Choi Y; Park C; Kang Y; Muya JT; Jang DP; Chang J
    Anal Chem; 2021 Jun; 93(23):8336-8344. PubMed ID: 34075746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catecholamine complexes of ruthenium-edta and their redox chemistry.
    Rein FN; Rocha RC; Toma HE
    J Inorg Biochem; 2001 Jun; 85(2-3):155-66. PubMed ID: 11410235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine.
    Lin Y; Zhang Z; Zhao L; Wang X; Yu P; Su L; Mao L
    Biosens Bioelectron; 2010 Feb; 25(6):1350-5. PubMed ID: 19926273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Probing Liquid/Liquid Interfacial Kinetics through Single Nanodroplet Electrochemistry.
    Moon H; Park JH
    Anal Chem; 2021 Dec; 93(50):16915-16921. PubMed ID: 34860502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical reactions in subfemtoliter-droplets studied with plasmonics-based electrochemical current microscopy.
    Wang Y; Shan X; Cui F; Li J; Wang S; Tao N
    Anal Chem; 2015 Jan; 87(1):494-8. PubMed ID: 25479127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoelectrochemistry in the study of single-cell signaling.
    Chen R; Alanis K; Welle TM; Shen M
    Anal Bioanal Chem; 2020 Sep; 412(24):6121-6132. PubMed ID: 32424795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules.
    Tang CF; Kumar SA; Chen SM
    Anal Biochem; 2008 Sep; 380(2):174-83. PubMed ID: 18577367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Ion Transfer across Liquid-Liquid Interfaces by Monitoring Collisions of Single Femtoliter Oil Droplets on Ultramicroelectrodes.
    Deng H; Dick JE; Kummer S; Kragl U; Strauss SH; Bard AJ
    Anal Chem; 2016 Aug; 88(15):7754-61. PubMed ID: 27387789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous detection of single attoliter droplet collisions by electrochemical and electrogenerated chemiluminescent responses.
    Dick JE; Renault C; Kim BK; Bard AJ
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11859-62. PubMed ID: 25213468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing Benzene and Cyclohexane Emulsion Droplet Collisions on Ultramicroelectrodes.
    Li Y; Deng H; Dick JE; Bard AJ
    Anal Chem; 2015 Nov; 87(21):11013-21. PubMed ID: 26461801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the buffering capacity of the supporting electrolyte on the electrochemical oxidation of dopamine and 4-methylcatechol in aqueous and nonaqueous solvents.
    Chen S; Tai KY; Webster RD
    Chem Asian J; 2011 Jun; 6(6):1492-9. PubMed ID: 21557485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electrochemistry of dopamine on gold-Agaricus bisporus laccase enzyme electrode: characterization and quantitative detection.
    Shervedani RK; Amini A
    Bioelectrochemistry; 2012 Apr; 84():25-31. PubMed ID: 22137204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyoxometalate adsorbed in a metal-organic framework for electrocatalytic dopamine oxidation.
    Ho WH; Chen TY; Otake KI; Chen YC; Wang YS; Li JH; Chen HY; Kung CW
    Chem Commun (Camb); 2020 Oct; 56(79):11763-11766. PubMed ID: 32930153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet array on local redox cycling-based electrochemical (LRC-EC) chip device.
    Ino K; Goto T; Kanno Y; Inoue KY; Takahashi Y; Shiku H; Matsue T
    Lab Chip; 2014 Feb; 14(4):787-94. PubMed ID: 24356747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical response of dopamine at a penicillamine self-assembled gold electrode.
    Wang Q; Dong D; Li N
    Bioelectrochemistry; 2001 Nov; 54(2):169-75. PubMed ID: 11694398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.