These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38392028)
1. Quarter-Annulus Si-Photodetector with Equal Inner and Outer Radii of Curvature for Reflective Photoplethysmography Sensors. Na Y; Kim C; Kim K; Kim TH; Kwon SH; Kang IS; Jung YW; Kim TW; Cho DH; An J; Lee JK; Park J Biosensors (Basel); 2024 Feb; 14(2):. PubMed ID: 38392028 [TBL] [Abstract][Full Text] [Related]
6. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths. Lee J; Kim M; Park HK; Kim IY Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772 [TBL] [Abstract][Full Text] [Related]
7. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation. Wójcikowski M; Pankiewicz B Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210 [TBL] [Abstract][Full Text] [Related]
8. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography. Maeda Y; Sekine M; Tamura T J Med Syst; 2011 Oct; 35(5):969-76. PubMed ID: 20703691 [TBL] [Abstract][Full Text] [Related]
9. The 2023 wearable photoplethysmography roadmap. Charlton PH; Allen J; Bailón R; Baker S; Behar JA; Chen F; Clifford GD; Clifton DA; Davies HJ; Ding C; Ding X; Dunn J; Elgendi M; Ferdoushi M; Franklin D; Gil E; Hassan MF; Hernesniemi J; Hu X; Ji N; Khan Y; Kontaxis S; Korhonen I; Kyriacou PA; Laguna P; Lázaro J; Lee C; Levy J; Li Y; Liu C; Liu J; Lu L; Mandic DP; Marozas V; Mejía-Mejía E; Mukkamala R; Nitzan M; Pereira T; Poon CCY; Ramella-Roman JC; Saarinen H; Shandhi MMH; Shin H; Stansby G; Tamura T; Vehkaoja A; Wang WK; Zhang YT; Zhao N; Zheng D; Zhu T Physiol Meas; 2023 Nov; 44(11):. PubMed ID: 37494945 [TBL] [Abstract][Full Text] [Related]
10. Q-PPG: Energy-Efficient PPG-Based Heart Rate Monitoring on Wearable Devices. Burrello A; Pagliari DJ; Risso M; Benatti S; Macii E; Benini L; Poncino M IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1196-1209. PubMed ID: 34673496 [TBL] [Abstract][Full Text] [Related]
11. The Accuracy of Wearable Photoplethysmography Sensors for Telehealth Monitoring: A Scoping Review. Knight S; Lipoth J; Namvari M; Gu C; Hedayati M; Syed-Abdul S; Spiteri RJ Telemed J E Health; 2023 Jun; 29(6):813-828. PubMed ID: 36288566 [No Abstract] [Full Text] [Related]
12. Design of a Realtime Photoplethysmogram Signal Quality Checker for Wearables and Edge Computing. Banerjee T; Gavas RD; Bs M; Karmakar S; Ramakrishnan RK; Pal A Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1323-1326. PubMed ID: 36086651 [TBL] [Abstract][Full Text] [Related]
13. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform. Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806 [TBL] [Abstract][Full Text] [Related]
14. Optimal Preprocessing of Raw Signals from Reflective Mode Photoplethysmography in Wearable Devices. Wolling F; Wasala SM; Van Laerhoven K Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1157-1163. PubMed ID: 34891493 [TBL] [Abstract][Full Text] [Related]
15. Towards a Self-Powered ECG and PPG Sensing Wearable Device. Zhao L; Jia Y Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6791-6794. PubMed ID: 34892667 [TBL] [Abstract][Full Text] [Related]
16. Effects of Contact Pressure in Reflectance Photoplethysmography in an In Vitro Tissue-Vessel Phantom. May JM; Mejía-Mejía E; Nomoni M; Budidha K; Choi C; Kyriacou PA Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960512 [TBL] [Abstract][Full Text] [Related]
17. Improving heart rate monitoring in the obese with time-of-flight photoplethysmography (TOF-PPG): a quantitative analysis of source-detector-distance effect. Badolato E; Little A; Le VND Opt Express; 2024 Jan; 32(3):4446-4456. PubMed ID: 38297646 [TBL] [Abstract][Full Text] [Related]
18. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks. Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543 [TBL] [Abstract][Full Text] [Related]
19. An Optical Signal Simulator for the Characterization of Photoplethysmographic Devices. Pittella E; Testa O; Podestà L; Piuzzi E Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339729 [TBL] [Abstract][Full Text] [Related]
20. Anomaly Detection in Multi-Wavelength Photoplethysmography Using Lightweight Machine Learning Algorithms. Baciu VE; Lambert Cause J; Solé Morillo Á; García-Naranjo JC; Stiens J; da Silva B Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]