BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38392113)

  • 1. Unraveling How Antimicrobial Lipid Mixtures Disrupt Virus-Mimicking Lipid Vesicles: A QCM-D Study.
    Moon S; Sut TN; Yoon BK; Jackman JA
    Biomimetics (Basel); 2024 Jan; 9(2):. PubMed ID: 38392113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Membrane Curvature Nanoarchitectonics on Membrane-Disruptive Interactions of Antimicrobial Lipids and Surfactants.
    Moon S; Yoon BK; Jackman JA
    Langmuir; 2022 Apr; 38(15):4606-4616. PubMed ID: 35389653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling Membrane-Disruptive Properties of Sodium Lauroyl Lactylate and Its Hydrolytic Products: A QCM-D and EIS Study.
    Gooran N; Tan SW; Yoon BK; Jackman JA
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling.
    Yoon BK; Park S; Ma GJ; Kolahdouzan K; Zhdanov VP; Jackman JA; Cho NJ
    J Phys Chem Lett; 2020 Jul; 11(13):4951-4957. PubMed ID: 32478524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-Disruptive Effects of Fatty Acid and Monoglyceride Mitigants on
    Tan SW; Yoon BK; Jackman JA
    Molecules; 2024 Jan; 29(1):. PubMed ID: 38202820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Evaluation of Antimicrobial Lipid Interactions with Tethered Lipid Bilayers by Electrochemical Impedance Spectroscopy.
    Tan SW; Jeon WY; Yoon BK; Jackman JA
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding How Sterols Regulate Membrane Remodeling in Supported Lipid Bilayers.
    Kawakami LM; Yoon BK; Jackman JA; Knoll W; Weiss PS; Cho NJ
    Langmuir; 2017 Dec; 33(51):14756-14765. PubMed ID: 29182278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the Membrane-Disruptive Behavior of Dodecylglycerol Using Supported Lipid Bilayers.
    Yoon BK; Jackman JA; Park S; Mokrzecka N; Cho NJ
    Langmuir; 2019 Mar; 35(9):3568-3575. PubMed ID: 30720282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoarchitectonics-based model membrane platforms for probing membrane-disruptive interactions of odd-chain antimicrobial lipids.
    Yoon BK; Tan SW; Tan JYB; Jackman JA; Cho NJ
    Nano Converg; 2022 Nov; 9(1):48. PubMed ID: 36318349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerol Monolaurate Inhibits Wild-Type African Swine Fever Virus Infection in Porcine Macrophages.
    Jackman JA; Arabyan E; Zakaryan H; Elrod CC
    Pathogens; 2023 Sep; 12(10):. PubMed ID: 37887709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid Membrane Remodeling by the Micellar Aggregation of Long-Chain Unsaturated Fatty Acids for Sustainable Antimicrobial Strategies.
    Shin S; Tae H; Park S; Cho NJ
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing How Acidic pH Conditions Affect the Membrane-Disruptive Activities of Lauric Acid and Glycerol Monolaurate.
    Valle-González ER; Jackman JA; Yoon BK; Park S; Sut TN; Cho NJ
    Langmuir; 2018 Nov; 34(45):13745-13753. PubMed ID: 30343569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the Biophysical Mechanisms of How Antiviral Detergents Disrupt Supported Lipid Membranes: Toward Replacing Triton X-100.
    Gooran N; Tan SW; Frey SL; Jackman JA
    Langmuir; 2024 Mar; 40(12):6524-6536. PubMed ID: 38478717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants.
    Yoon BK; Jackman JA; Kim MC; Cho NJ
    Langmuir; 2015 Sep; 31(37):10223-32. PubMed ID: 26325618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of African swine fever virus in liquid and feed by medium-chain fatty acids and glycerol monolaurate.
    Jackman JA; Hakobyan A; Zakaryan H; Elrod CC
    J Anim Sci Biotechnol; 2020 Dec; 11(1):114. PubMed ID: 33292608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supported Lipid Bilayer Platform for Characterizing the Membrane-Disruptive Behaviors of Triton X-100 and Potential Detergent Replacements.
    Gooran N; Yoon BK; Jackman JA
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical Characterization of LTX-315 Anticancer Peptide Interactions with Model Membrane Platforms: Effect of Membrane Surface Charge.
    Koo DJ; Sut TN; Tan SW; Yoon BK; Jackman JA
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rupture of zwitterionic lipid vesicles by an amphipathic, α-helical peptide: indirect effects of sensor surface and implications for experimental analysis.
    Zan GH; Cho NJ
    Colloids Surf B Biointerfaces; 2014 Sep; 121():340-6. PubMed ID: 25059728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between vesicle size and steric hindrance influences vesicle rupture on solid supports.
    Jackman JA; Kim MC; Zhdanov VP; Cho NJ
    Phys Chem Chem Phys; 2016 Jan; 18(4):3065-72. PubMed ID: 26739602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of a Fully Anionic Supported Lipid Bilayer to Model Bacterial Inner Membrane for QCM-D Studies.
    Swana KW; Camesano TA; Nagarajan R
    Membranes (Basel); 2022 May; 12(6):. PubMed ID: 35736265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.