These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38392146)

  • 1. Integrating Egocentric and Robotic Vision for Object Identification Using Siamese Networks and Superquadric Estimations in Partial Occlusion Scenarios.
    Menendez E; Martínez S; Díaz-de-María F; Balaguer C
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontology based autonomous robot task processing framework.
    Ge Y; Zhang S; Cai Y; Lu T; Wang H; Hui X; Wang S
    Front Neurorobot; 2024; 18():1401075. PubMed ID: 38774519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. See You See Me: the Role of Eye Contact in Multimodal Human-Robot Interaction.
    Xu TL; Zhang H; Yu C
    ACM Trans Interact Intell Syst; 2016 May; 6(1):. PubMed ID: 28966875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-like object tracking and gaze estimation with PKD android.
    Wijayasinghe IB; Miller HL; Das SK; Bugnariu NL; Popa DO
    Proc SPIE Int Soc Opt Eng; 2016 May; 9859():. PubMed ID: 29416193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting Three-Dimensional Gaze Tracking for Action Recognition During Bimanual Manipulation to Enhance Human-Robot Collaboration.
    Haji Fathaliyan A; Wang X; Santos VJ
    Front Robot AI; 2018; 5():25. PubMed ID: 33500912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model predictive manipulation of compliant objects with multi-objective optimizer and adversarial network for occlusion compensation.
    Qi J; Zhou P; Ran G; Gao H; Wang P; Li D; Gao Y; Navarro-Alarcon D
    ISA Trans; 2024 Jul; 150():359-373. PubMed ID: 38797650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot.
    Kreiser R; Renner A; Leite VRC; Serhan B; Bartolozzi C; Glover A; Sandamirskaya Y
    Front Neurosci; 2020; 14():551. PubMed ID: 32655350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Siamese-DETR for Generic Multi-Object Tracking.
    Liu Q; Li Y; Jiang Y; Fu Y
    IEEE Trans Image Process; 2024; 33():3935-3949. PubMed ID: 38917291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing Superquadrics from Intensity and Color Images.
    Tomašević D; Peer P; Solina F; Jaklič A; Štruc V
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Point Cloud Descriptor for Vision Based Robotic Grasping System.
    Wang F; Liang C; Ru C; Cheng H
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31091751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Object Grasp Control of a 3D Robot Arm by Combining EOG Gaze Estimation and Camera-Based Object Recognition.
    Amri Bin Suhaimi MS; Matsushita K; Kitamura T; Laksono PW; Sasaki M
    Biomimetics (Basel); 2023 May; 8(2):. PubMed ID: 37218794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-stage grasp detection method for sequential robotic grasping in stacking scenarios.
    Zhang J; Yin B; Zhong Y; Wei Q; Zhao J; Bilal H
    Math Biosci Eng; 2024 Feb; 21(2):3448-3472. PubMed ID: 38454735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Object Recognition and Registration for Robotic Grasping Systems Using a Modified Viewpoint Feature Histogram.
    Chen CS; Chen PC; Hsu CM
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27886080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Webcam-based gaze estimation for computer screen interaction.
    Falch L; Lohan KS
    Front Robot AI; 2024; 11():1369566. PubMed ID: 38628652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaze Control of a Robotic Head for Realistic Interaction With Humans.
    Duque-Domingo J; Gómez-García-Bermejo J; Zalama E
    Front Neurorobot; 2020; 14():34. PubMed ID: 32625075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-in-the-loop error detection in an object organization task with a social robot.
    Frijns HA; Hirschmanner M; Sienkiewicz B; Hönig P; Indurkhya B; Vincze M
    Front Robot AI; 2024; 11():1356827. PubMed ID: 38690120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Education robot object detection with a brain-inspired approach integrating Faster R-CNN, YOLOv3, and semi-supervised learning.
    Hong Q; Dong H; Deng W; Ping Y
    Front Neurorobot; 2023; 17():1338104. PubMed ID: 38239759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Preferences for Robot Eye Gaze in Human-to-Robot Handovers.
    Faibish T; Kshirsagar A; Hoffman G; Edan Y
    Int J Soc Robot; 2022; 14(4):995-1012. PubMed ID: 35079297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.