These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 38392154)

  • 1. Numerical Simulation of the Transient Flow around the Combined Morphing Leading-Edge and Trailing-Edge Airfoil.
    Bashir M; Negahban MH; Botez RM; Wong T
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow Control around the UAS-S45 Pitching Airfoil Using a Dynamically Morphing Leading Edge (DMLE): A Numerical Study.
    Bashir M; Zonzini N; Botez RM; Ceruti A; Wong T
    Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36810382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of aerodynamic performance of a heaving airfoil using synthetic-jet based active flow control.
    Wang C; Tang H
    Bioinspir Biomim; 2018 May; 13(4):046005. PubMed ID: 29648545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of leading-edge separation on bioinspired airfoil with fluttering coverts.
    Ma X; Gong X; Tang Z; Jiang N
    Phys Rev E; 2022 Feb; 105(2-2):025107. PubMed ID: 35291149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.
    Wang Y; Zheng X; Hu R; Wang P
    PLoS One; 2016; 11(9):e0163443. PubMed ID: 27658310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary assessment of the NACA0021 trailing edge wedge for wind turbine application.
    Abdalkarem AAM; Ansaf R; Muzammil WK; Ibrahim A; Harun Z; Fazlizan A
    Heliyon; 2023 Nov; 9(11):e21193. PubMed ID: 37942161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.
    Johnston J; Gopalarathnam A
    Bioinspir Biomim; 2012 Sep; 7(3):036003. PubMed ID: 22498691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active control of airfoil turbulent boundary layer noise with trailing-edge blowing.
    Yang C; Arcondoulis EJG; Yang Y; Guo J; Maryami R; Bi C; Liu Y
    J Acoust Soc Am; 2023 Apr; 153(4):2115. PubMed ID: 37092929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Load alleviation of feather-inspired compliant airfoils for instantaneous flow control.
    Gamble LL; Harvey C; Inman DJ
    Bioinspir Biomim; 2020 Oct; 15(5):. PubMed ID: 32521517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal design of aeroacoustic airfoils with owl-inspired trailing-edge serrations.
    Zhao M; Cao H; Zhang M; Liao C; Zhou T
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34020442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow visualization over a thick blunt trailing-edge airfoil with base cavity at low Reynolds numbers using PIV technique.
    Taherian G; Nili-Ahmadabadi M; Karimi MH; Tavakoli MR
    J Vis (Tokyo); 2017; 20(4):695-710. PubMed ID: 29026342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covert-inspired flaps for lift enhancement and stall mitigation.
    Duan C; Wissa A
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33784648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic Analysis of Camber Morphing Airfoils in Transition via Computational Fluid Dynamics.
    Jo BW; Majid T
    Biomimetics (Basel); 2022 Apr; 7(2):. PubMed ID: 35645179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study of a passive control of airfoil lift using bioinspired feather flap.
    Wang L; Alam MM; Zhou Y
    Bioinspir Biomim; 2019 Sep; 14(6):066005. PubMed ID: 31434057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The PELskin project-part V: towards the control of the flow around aerofoils at high angle of attack using a self-activated deployable flap.
    Rosti ME; Kamps L; Bruecker C; Omidyeganeh M; Pinelli A
    Meccanica; 2017; 52(8):1811-1824. PubMed ID: 28529384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifidelity kinematic parameter optimization of a flapping airfoil.
    Zheng H; Xie F; Ji T; Zhu Z; Zheng Y
    Phys Rev E; 2020 Jan; 101(1-1):013107. PubMed ID: 32069665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics.
    Jain S; Sitaram N; Krishnaswamy S
    Int Sch Res Notices; 2015; 2015():402358. PubMed ID: 27347517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Experimental and Simulation Study of the Active Camber Morphing Concept on Airfoils Using Bio-Inspired Structures.
    Dharmdas A; Patil AY; Baig A; Hosmani OZ; Mathad SN; Patil MB; Kumar R; Kotturshettar BB; Fattah IMR
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE EFFECTS OF WING ROTATION ON UNSTEADY AERODYNAMIC PERFORMANCE AT LOW REYNOLDS NUMBERS.
    Dickinson M
    J Exp Biol; 1994 Jul; 192(1):179-206. PubMed ID: 9317589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.