These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38392158)

  • 1. Lamellar Septa-like Structured Carbonate Apatite Scaffolds with Layer-by-Layer Fracture Behavior for Bone Regeneration.
    Taleb Alashkar AN; Hayashi K; Ishikawa K
    Biomimetics (Basel); 2024 Feb; 9(2):. PubMed ID: 38392158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration.
    Hayashi K; Munar ML; Ishikawa K
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110848. PubMed ID: 32279778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres.
    Wei G; Ma PX
    J Biomed Mater Res A; 2006 Aug; 78(2):306-15. PubMed ID: 16637043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of biomimetic coating and cuttlebone microparticle reinforcement on the osteoconductive properties of cellulose-based scaffolds.
    Palaveniene A; Songailiene K; Baniukaitiene O; Tamburaci S; Kimna C; Tihminlioğlu F; Liesiene J
    Int J Biol Macromol; 2020 Jun; 152():1194-1204. PubMed ID: 31759022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Preparation and
    Li J; Zhang X; Guo Q; Zhang J; Cao Y; Zhang X; Huang J; Wang Q; Liu X; Hao C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):434-440. PubMed ID: 29806301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration.
    Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H
    J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ant-nest type porous scaffold with micro-struts consisting of carbonate apatite for promoting bone formation and scaffold resorption.
    Tan JLT; Shimabukuro M; Kobayashi M; Kishida R; Kawashita M; Ishikawa K
    J Biomed Mater Res A; 2024 Jan; 112(1):31-43. PubMed ID: 37680002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoconductive 3D porous composite scaffold from regenerated cellulose and cuttlebone-derived hydroxyapatite.
    Palaveniene A; Tamburaci S; Kimna C; Glambaite K; Baniukaitiene O; Tihminlioğlu F; Liesiene J
    J Biomater Appl; 2019 Jan; 33(6):876-890. PubMed ID: 30451067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering.
    Saber-Samandari S; Saber-Samandari S; Kiyazar S; Aghazadeh J; Sadeghi A
    Int J Biol Macromol; 2016 May; 86():434-42. PubMed ID: 26836617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering.
    Pant S; Thomas S; Loganathan S; Valapa RB
    Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of critical-size segmental defects in rat femurs using carbonate apatite honeycomb scaffolds.
    Sakemi Y; Hayashi K; Tsuchiya A; Nakashima Y; Ishikawa K
    J Biomed Mater Res A; 2021 Sep; 109(9):1613-1622. PubMed ID: 33644971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Space Dimensionality within Scaffold for Bone Regeneration with Large and Oriented Blood Vessels.
    Hayashi K; Kishida R; Tsuchiya A; Ishikawa K
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superiority of Triply Periodic Minimal Surface Gyroid Structure to Strut-Based Grid Structure in Both Strength and Bone Regeneration.
    Hayashi K; Kishida R; Tsuchiya A; Ishikawa K
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34570-34577. PubMed ID: 37433180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.