These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38392356)
1. PIDNET: Polar Transformation Based Implicit Disentanglement Network for Truncation Artifacts. Li G; Huang X; Huang X; Zong Y; Luo S Entropy (Basel); 2024 Jan; 26(2):. PubMed ID: 38392356 [TBL] [Abstract][Full Text] [Related]
2. ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction. Liao H; Lin WA; Zhou SK; Luo J IEEE Trans Med Imaging; 2020 Mar; 39(3):634-643. PubMed ID: 31395543 [TBL] [Abstract][Full Text] [Related]
3. Low-dimensional Manifold Constrained Disentanglement Network for Metal Artifact Reduction. Niu C; Cong W; Fan FL; Shan H; Li M; Liang J; Wang G IEEE Trans Radiat Plasma Med Sci; 2022 Jul; 6(6):656-666. PubMed ID: 35865007 [TBL] [Abstract][Full Text] [Related]
4. A semi-supervised learning method of latent features based on convolutional neural networks for CT metal artifact reduction. Shi Z; Wang N; Kong F; Cao H; Cao Q Med Phys; 2022 Jun; 49(6):3845-3859. PubMed ID: 35322430 [TBL] [Abstract][Full Text] [Related]
5. A streak artifact reduction algorithm in sparse-view CT using a self-supervised neural representation. Kim B; Shim H; Baek J Med Phys; 2022 Dec; 49(12):7497-7515. PubMed ID: 35880806 [TBL] [Abstract][Full Text] [Related]
6. MARGANVAC: metal artifact reduction method based on generative adversarial network with variable constraints. Li G; Ji L; You C; Gao S; Zhou L; Bai K; Luo S; Gu N Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37696272 [No Abstract] [Full Text] [Related]
7. A platform-independent method to reduce CT truncation artifacts using discriminative dictionary representations. Chen Y; Budde A; Li K; Li Y; Hsieh J; Chen GH Med Phys; 2017 Jan; 44(1):121-131. PubMed ID: 28102942 [TBL] [Abstract][Full Text] [Related]
8. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning. Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792 [TBL] [Abstract][Full Text] [Related]
9. SemiMAR: Semi-Supervised Learning for CT Metal Artifact Reduction. Wang T; Yu H; Wang Z; Chen H; Liu Y; Lu J; Zhang Y IEEE J Biomed Health Inform; 2023 Nov; 27(11):5369-5380. PubMed ID: 37669208 [TBL] [Abstract][Full Text] [Related]
10. Unsupervised disentanglement strategy for mitigating artifact in photoacoustic tomography under extremely sparse view. Zhong W; Li T; Hou S; Zhang H; Li Z; Wang G; Liu Q; Song X Photoacoustics; 2024 Aug; 38():100613. PubMed ID: 38764521 [TBL] [Abstract][Full Text] [Related]
11. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks. Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765 [TBL] [Abstract][Full Text] [Related]
12. Probabilistic self-learning framework for low-dose CT denoising. Bai T; Wang B; Nguyen D; Jiang S Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348 [TBL] [Abstract][Full Text] [Related]
13. Dual-scale similarity-guided cycle generative adversarial network for unsupervised low-dose CT denoising. Zhao F; Liu M; Gao Z; Jiang X; Wang R; Zhang L Comput Biol Med; 2023 Jul; 161():107029. PubMed ID: 37230021 [TBL] [Abstract][Full Text] [Related]
14. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
15. Unsupervised cycle-consistent network using restricted subspace field map for removing susceptibility artifacts in EPI. Bao Q; Xie W; Otikovs M; Xia L; Xie H; Liu X; Liu K; Zhang Z; Chen F; Zhou X; Liu C Magn Reson Med; 2023 Aug; 90(2):458-472. PubMed ID: 37052369 [TBL] [Abstract][Full Text] [Related]
16. Correction of Arterial-Phase Motion Artifacts in Gadoxetic Acid-Enhanced Liver MRI Using an Innovative Unsupervised Network. Pan F; Fan Q; Xie H; Bai C; Zhang Z; Chen H; Yang L; Zhou X; Bao Q; Liu C Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892922 [TBL] [Abstract][Full Text] [Related]
17. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients. Kwon K; Kim D; Kim B; Park H Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219 [TBL] [Abstract][Full Text] [Related]
18. Deep-Learning-Based Metal Artefact Reduction With Unsupervised Domain Adaptation Regularization for Practical CT Images. Du M; Liang K; Zhang L; Gao H; Liu Y; Xing Y IEEE Trans Med Imaging; 2023 Aug; 42(8):2133-2145. PubMed ID: 37022909 [TBL] [Abstract][Full Text] [Related]
19. A self-supervised guided knowledge distillation framework for unpaired low-dose CT image denoising. Wang J; Tang Y; Wu Z; Du Q; Yao L; Yang X; Li M; Zheng J Comput Med Imaging Graph; 2023 Jul; 107():102237. PubMed ID: 37116340 [TBL] [Abstract][Full Text] [Related]
20. Unsupervised CT Metal Artifact Learning Using Attention-Guided β-CycleGAN. Lee J; Gu J; Ye JC IEEE Trans Med Imaging; 2021 Dec; 40(12):3932-3944. PubMed ID: 34329157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]