These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38392379)

  • 1. Techno-Economic Analysis of the Optimum Configuration for Supercritical Carbon Dioxide Cycles in Concentrating Solar Power Systems.
    Merchán RP; González-Portillo LF; Muñoz-Antón J
    Entropy (Basel); 2024 Jan; 26(2):. PubMed ID: 38392379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bibliometric Analysis on Supercritical CO
    Reyes-Belmonte MA; Guédez R; Montes MJ
    Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34682014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ceramic-metal composites for heat exchangers in concentrated solar power plants.
    Caccia M; Tabandeh-Khorshid M; Itskos G; Strayer AR; Caldwell AS; Pidaparti S; Singnisai S; Rohskopf AD; Schroeder AM; Jarrahbashi D; Kang T; Sahoo S; Kadasala NR; Marquez-Rossy A; Anderson MH; Lara-Curzio E; Ranjan D; Henry A; Sandhage KH
    Nature; 2018 Oct; 562(7727):406-409. PubMed ID: 30333580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techno-economic and environmental optimization of a combined regenerated gas turbine and supercritical CO
    Almadani M
    Chemosphere; 2023 Oct; 338():139527. PubMed ID: 37482316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning discovery of cost-efficient dry cooler designs for concentrated solar power plants.
    Narasiah H; Kitouni O; Scorsoglio A; Sturdza BK; Hatcher S; Katcher K; Khalesi J; Garcia D; Kusner MJ
    Sci Rep; 2024 Aug; 14(1):19086. PubMed ID: 39154008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoeconomic analysis of a combined supercritical CO
    Ochoa GV; Forero JD; Rojas JP
    Heliyon; 2022 Dec; 8(12):e12230. PubMed ID: 36582691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parametric thermodynamic analysis and economic assessment of a novel solar heliostat-molten carbonate fuel cell system for electricity and fresh water production.
    Sadeghi S; Askari IB
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):5469-5495. PubMed ID: 34420171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost of Using Laser Powder Bed Fusion to Fabricate a Molten Salt-to-Supercritial Carbon Dioxide Heat Exchanger for Concentrating Solar Power.
    Ziev T; Rasouli E; Tano IN; Wu Z; Rao Yarasi S; Lamprinakos N; Seo J; Narayanan V; Rollett AD; Vaishnav P
    3D Print Addit Manuf; 2024 Jun; 11(3):e1108-e1118. PubMed ID: 39359594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A demonstration concentrating solar power plant in China: Carbon neutrality, energy renewability and policy perspectives.
    Ye H; Peng H; Li C; Li Y; Li Z; Yang Q; Chen G
    J Environ Manage; 2023 Feb; 328():117003. PubMed ID: 36508975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techno-Economic Optimization of CSP Plants with Free-Falling Particle Receivers.
    González-Portillo LF; Albrecht K; Ho CK
    Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33419200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of a New Design of Molten Salt-to-CO
    Montes MJ; Linares JI; Barbero R; Moratilla BY
    Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to Construct a Combined S-CO
    Sun E; Hu H; Li H; Liu C; Xu J
    Entropy (Basel); 2018 Dec; 21(1):. PubMed ID: 33266735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinel Cu-Mn-Cr Oxide Nanoparticle-Pigmented Solar Selective Coatings Maintaining >94% Efficiency at 750 °C.
    Xu C; Wang X; Liu J
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35839146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?
    Moore J; Apt J
    Environ Sci Technol; 2013 Mar; 47(6):2487-93. PubMed ID: 23379665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentrating solar thermal power.
    Müller-Steinhagen H
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110433. PubMed ID: 23816910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proposal and Thermodynamic Assessment of S-CO
    Siddiqui ME; Almitani KH
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Techno-economic optimization of a new waste-to-energy plant for electricity, cooling, and desalinated water using various biomass for emission reduction.
    Hai T; Ma X; Singh Chauhan B; Mahmoud S; Al-Kouz W; Tong J; Salah B
    Chemosphere; 2023 Oct; 338():139398. PubMed ID: 37406939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant.
    Hosseini R; Babaelahi M; Rafat E
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profitability of Concentrated Solar-Biomass hybrid power plants: Dataset of the stochastic techno-economic assessment.
    Gutiérrez-Alvarez R; Guerra K; Haro P
    Data Brief; 2023 Jun; 48():109096. PubMed ID: 37101778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exergoeconomic and Thermodynamic Analyses of Solar Power Tower Based Novel Combined Helium Brayton Cycle-Transcritical CO
    Khan Y; Singh D; Caliskan H; Hong H
    Glob Chall; 2023 Dec; 7(12):2300191. PubMed ID: 38094864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.