These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38392510)
1. Heat Shock Protein Genes Affect the Rapid Cold Hardening Ability of Two Invasive Tephritids. Wang Y; Zhao Y; Zhang J; Li Z Insects; 2024 Jan; 15(2):. PubMed ID: 38392510 [No Abstract] [Full Text] [Related]
2. A transcriptional and functional analysis of heat hardening in two invasive fruit fly species, Gu X; Zhao Y; Su Y; Wu J; Wang Z; Hu J; Liu L; Zhao Z; Hoffmann AA; Chen B; Li Z Evol Appl; 2019 Jun; 12(6):1147-1163. PubMed ID: 31293628 [TBL] [Abstract][Full Text] [Related]
3. Thermal plasticity is related to the hardening response of heat shock protein expression in two Bactrocera fruit flies. Hu JT; Chen B; Li ZH J Insect Physiol; 2014 Aug; 67():105-13. PubMed ID: 24992713 [TBL] [Abstract][Full Text] [Related]
4. Rapid cold hardening and cold acclimation promote cold tolerance of oriental fruit fly, Xie Z; Xu L; Zhao J; Li N; Qin D; Xiao C; Lu Y; Guo Z Bull Entomol Res; 2023 Aug; 113(4):574-586. PubMed ID: 37501573 [TBL] [Abstract][Full Text] [Related]
5. Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)? Pieterse W; Terblanche JS; Addison P J Insect Physiol; 2017 Apr; 98():1-6. PubMed ID: 27845146 [TBL] [Abstract][Full Text] [Related]
6. Chromosome-level genome assembly reveals potential epigenetic mechanisms of the thermal tolerance in the oriental fruit fly, Bactrocera dorsalis. Yang Y; Jiang HB; Liang CH; Ma YP; Dou W; Wang JJ Int J Biol Macromol; 2023 Jan; 225():430-441. PubMed ID: 36400209 [TBL] [Abstract][Full Text] [Related]
7. Relative Tolerance of Six Bactrocera (Diptera: Tephritidae) Species to Phytosanitary Cold Treatment. Myers SW; Cancio-Martinez E; Hallman GJ; Fontenot EA; Vreysen MJB J Econ Entomol; 2016 Dec; 109(6):2341-2347. PubMed ID: 27660425 [TBL] [Abstract][Full Text] [Related]
8. Rapid cold hardening and expression of heat shock protein genes in the B-biotype Bemisia tabaci. Wang H; Lei Z; Li X; Oetting RD Environ Entomol; 2011 Feb; 40(1):132-9. PubMed ID: 22182622 [TBL] [Abstract][Full Text] [Related]
9. Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1). Díaz F; Orobio RF; Chavarriaga P; Toro-Perea N J Therm Biol; 2015 Aug; 52():199-207. PubMed ID: 26267515 [TBL] [Abstract][Full Text] [Related]
10. Invasion by Bactrocera dorsalis and niche partitioning among tephritid species in Comoros. Mze Hassani I; Raveloson-Ravaomanarivo LH; Delatte H; Chiroleu F; Allibert A; Nouhou S; Quilici S; Duyck PF Bull Entomol Res; 2016 Dec; 106(6):749-758. PubMed ID: 27312045 [TBL] [Abstract][Full Text] [Related]
11. The mitochondrial genome of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae): Complete DNA sequence, genome organization, and phylogenetic analysis with other tephritids using next generation DNA sequencing. Choudhary JS; Naaz N; Prabhakar CS; Rao MS; Das B Gene; 2015 Sep; 569(2):191-202. PubMed ID: 26031235 [TBL] [Abstract][Full Text] [Related]
12. The study of the transformer gene from Bactrocera dorsalis and B. correcta with putative core promoter regions. Laohakieat K; Aketarawong N; Isasawin S; Thitamadee S; Thanaphum S BMC Genet; 2016 Feb; 17():34. PubMed ID: 26833079 [TBL] [Abstract][Full Text] [Related]
13. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust. Cui F; Wang H; Zhang H; Kang L Cryobiology; 2014 Oct; 69(2):243-8. PubMed ID: 25086202 [TBL] [Abstract][Full Text] [Related]
14. Genomes of the cosmopolitan fruit pest Bactrocera dorsalis (Diptera: Tephritidae) reveal its global invasion history and thermal adaptation. Zhang Y; Liu S; De Meyer M; Liao Z; Zhao Y; Virgilio M; Feng S; Qin Y; Singh S; Wee SL; Jiang F; Guo S; Li H; Deschepper P; Vanbergen S; Delatte H; van Sauers-Muller A; Syamsudin TS; Kawi AP; Kasina M; Badji K; Said F; Liu L; Zhao Z; Li Z J Adv Res; 2023 Nov; 53():61-74. PubMed ID: 36574947 [TBL] [Abstract][Full Text] [Related]
15. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. Huang LH; Wang CZ; Kang L J Insect Physiol; 2009 Mar; 55(3):279-85. PubMed ID: 19133268 [TBL] [Abstract][Full Text] [Related]
16. Comparison of in vitro heat and cold tolerances of the new invasive species Bactrocera invadens (Diptera: Tephritidae) with three known tephritids. Hallman GJ; Myers SW; Jessup AJ; Islam A J Econ Entomol; 2011 Feb; 104(1):21-5. PubMed ID: 21404834 [TBL] [Abstract][Full Text] [Related]
17. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins. Benoit JB; Lopez-Martinez G; Teets NM; Phillips SA; Denlinger DL Med Vet Entomol; 2009 Dec; 23(4):418-25. PubMed ID: 19941608 [TBL] [Abstract][Full Text] [Related]
18. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. Sejerkilde M; Sørensen JG; Loeschcke V J Insect Physiol; 2003 Aug; 49(8):719-26. PubMed ID: 12880651 [TBL] [Abstract][Full Text] [Related]
19. Thermal Biology and Seasonal Population Abundance of Motswagole R; Gotcha N; Nyamukondiwa C Int J Insect Sci; 2019; 11():1179543319863417. PubMed ID: 31488955 [TBL] [Abstract][Full Text] [Related]
20. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster). Štětina T; Koštál V; Korbelová J PLoS One; 2015; 10(6):e0128976. PubMed ID: 26034990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]