These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38392697)

  • 1. Enhancing Silicon Solar Cell Performance Using a Thin-Film-like Aluminum Nanoparticle Surface Layer.
    Fjell MD; Lothe JB; Halas NJ; Rosnes MH; Holst B; Greve MM
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency improvement of thin film solar cell using silver pyramids array and antireflective layer.
    Mohsin ASM; Mondal S; Mobashera M; Malik A; Islam M; Rubaiat M
    Heliyon; 2023 Jun; 9(6):e16749. PubMed ID: 37303542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Efficiency Crystalline Silicon-Based Solar Cells Using Textured TiO
    Elrashidi A; Elleithy K
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon enhanced ultrathin Cu
    Jamil S; Saha U; Alam MK
    Nanoscale Adv; 2023 May; 5(11):2887-2896. PubMed ID: 37260479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-State Plasmonic Solar Cells.
    Ueno K; Oshikiri T; Sun Q; Shi X; Misawa H
    Chem Rev; 2018 Mar; 118(6):2955-2993. PubMed ID: 28737382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles.
    Chen X; Jia B; Saha JK; Cai B; Stokes N; Qiao Q; Wang Y; Shi Z; Gu M
    Nano Lett; 2012 May; 12(5):2187-92. PubMed ID: 22300399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light absorption enhancement in thin film GaAs solar cells using dielectric nanoparticles.
    Chaudhry FA; Escandell L; López-Fraguas E; Vergaz R; Sánchez-Pena JM; García-Cámara B
    Sci Rep; 2022 Jun; 12(1):9240. PubMed ID: 35655090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells.
    Zhang Y; Cai B; Jia B
    Nanomaterials (Basel); 2016 May; 6(6):. PubMed ID: 28335223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructures for Light Trapping in Thin Film Solar Cells.
    Peter Amalathas A; Alkaisi MM
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31533261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front.
    Uhrenfeldt C; Villesen TF; Têtu A; Johansen B; Larsen AN
    Opt Express; 2015 Jun; 23(11):A525-38. PubMed ID: 26072877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles.
    Nagel JR; Scarpulla MA
    Opt Express; 2010 Jun; 18 Suppl 2():A139-46. PubMed ID: 20588582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Vinogradova E; Ayon AA
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15472-9. PubMed ID: 25137194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient broadband light absorption in thin-film a-Si solar cell based on double sided hybrid bi-metallic nanogratings.
    Subhan FE; Khan AD; Hilal FE; Khan AD; Khan SD; Ullah R; Imran M; Noman M
    RSC Adv; 2020 Mar; 10(20):11836-11842. PubMed ID: 35496636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super absorption of solar energy using a plasmonic nanoparticle based CdTe solar cell.
    Rehman Q; Khan AD; Khan AD; Noman M; Ali H; Rauf A; Ahmad MS
    RSC Adv; 2019 Oct; 9(59):34207-34213. PubMed ID: 35530006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Propagation in Flexible Thin-Film Amorphous Silicon Solar Cells with Nanotextured Metal Back Reflectors.
    Cao S; Yu D; Lin Y; Zhang C; Lu L; Yin M; Zhu X; Chen X; Li D
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26184-26192. PubMed ID: 32392028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures.
    Ha K; Jang E; Jang S; Lee JK; Jang MS; Choi H; Cho JS; Choi M
    Nanotechnology; 2016 Feb; 27(5):055403. PubMed ID: 26751935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring plasmonic and electrostatic field effects to maximize solar energy conversion by bacteriorhodopsin, the other natural photosynthetic system.
    Yen CW; Hayden SC; Dreaden EC; Szymanski P; El-Sayed MA
    Nano Lett; 2011 Sep; 11(9):3821-6. PubMed ID: 21800843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.