These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38393054)
21. Discovery of Novel DPP-IV Inhibitors as Potential Candidates for the Treatment of Type 2 Musoev A; Numonov S; You Z; Gao H Molecules; 2019 Aug; 24(16):. PubMed ID: 31394858 [TBL] [Abstract][Full Text] [Related]
22. Discovery of promising FtsZ inhibitors by E-pharmacophore, 3D-QSAR, molecular docking study, and molecular dynamics simulation. Qiu Y; Zhou L; Hu Y; Bao Y J Recept Signal Transduct Res; 2019 Apr; 39(2):154-166. PubMed ID: 31355691 [TBL] [Abstract][Full Text] [Related]
23. Prediction of Novel Anoctamin1 (ANO1) Inhibitors Using 3D-QSAR Pharmacophore Modeling and Molecular Docking. Lee YH; Yi GS Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30336555 [TBL] [Abstract][Full Text] [Related]
24. Ligand-based pharmacophore modelling and virtual screening for the identification of amyloid-beta diagnostic molecules. Marondedze EF; Govender KK; Govender PP J Mol Graph Model; 2020 Dec; 101():107711. PubMed ID: 32898834 [TBL] [Abstract][Full Text] [Related]
25. 3D QSAR, Docking, Molecular Dynamics Simulations and MM-GBSA studies of Extended Side Chain of the Antitubercular Drug (6S) 2-Nitro-6- {[4-(trifluoromethoxy) benzyl] oxy}-6,7-dihydro-5H-imidazo[2,1-b] [1,3] oxazine. Chaudhari HK; Pahelkar A Infect Disord Drug Targets; 2019; 19(2):145-166. PubMed ID: 30324898 [TBL] [Abstract][Full Text] [Related]
26. Structure-Activity Relationship Studies on VEGFR2 Tyrosine Kinase Inhibitors for Identification of Potential Natural Anticancer Compounds. Verma M; Sarfraz A; Hasan I; Vasudev PG; Khan F Med Chem; 2024; 20(6):646-661. PubMed ID: 38299297 [TBL] [Abstract][Full Text] [Related]
27. Combined Pharmacophore Modeling, 3D-QSAR, Molecular Docking and Molecular Dynamics Study on Indolyl-aryl-sulfone Derivatives as New HIV1 Inhibitors. Ouassaf M; Abul Qais F; Belaidi S; Bakhouch M; Mohamed AS; Chtita S Acta Chim Slov; 2022 Jun; 69(2):489-506. PubMed ID: 35861093 [TBL] [Abstract][Full Text] [Related]
28. In Silico Analysis of USP7 Inhibitors Based on Building QSAR Models and Fragment Design for Screening Marine Compound Libraries. Tan H; Li C; Lai T; Luo L Mar Drugs; 2023 Dec; 22(1):. PubMed ID: 38276639 [TBL] [Abstract][Full Text] [Related]
29. An insight into selective and potent inhibition of histone deacetylase 8 through induced-fit docking, pharmacophore modeling and QSAR studies. Kashyap K; Kakkar R J Biomol Struct Dyn; 2020 Jan; 38(1):48-65. PubMed ID: 30633630 [TBL] [Abstract][Full Text] [Related]
30. Discovery of potential FGFR3 inhibitors via QSAR, pharmacophore modeling, virtual screening and molecular docking studies against bladder cancer. Ganji M; Bakhshi S; Shoari A; Ahangari Cohan R J Transl Med; 2023 Feb; 21(1):111. PubMed ID: 36765337 [TBL] [Abstract][Full Text] [Related]
31. Computer-aided identification of natural lead compounds as cyclooxygenase-2 inhibitors using virtual screening and molecular dynamic simulation. Ounissi M; Kameli A; Tigrine C; Rachedi FZ Comput Biol Chem; 2018 Dec; 77():1-16. PubMed ID: 30195234 [TBL] [Abstract][Full Text] [Related]
32. Proposing novel TNFα direct inhibitor Scaffolds using fragment-docking based e-pharmacophore modeling and binary QSAR-based virtual screening protocols pipeline. Zaka M; Abbasi BH; Durdagi S J Mol Graph Model; 2018 Oct; 85():111-121. PubMed ID: 30149308 [TBL] [Abstract][Full Text] [Related]
33. Identification of inhibitors of the polo-box domain of polo-like kinase 1 from natural and semisynthetic compounds. Abdelfatah S; Fleischer E; Klinger A; Wong VKW; Efferth T Invest New Drugs; 2020 Feb; 38(1):1-9. PubMed ID: 30877426 [TBL] [Abstract][Full Text] [Related]
34. Design and Synthesis of a Novel PLK1 Inhibitor Scaffold Using a Hybridized 3D-QSAR Model. Oh Y; Jung H; Kim H; Baek J; Jun J; Cho H; Im D; Hah JM Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33917995 [TBL] [Abstract][Full Text] [Related]
35. '3D-QSAR-based, pharmacophore modelling, virtual screening, and molecular docking studies for identification of hypoxia-inducible factor-1 inhibitor with potential bioactivity. Yadav PK; Singh S; Singh AK Comput Biol Med; 2023 Nov; 166():107557. PubMed ID: 37812986 [TBL] [Abstract][Full Text] [Related]
36. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening. Chaudhari P; Bari S Mol Divers; 2016 Feb; 20(1):41-53. PubMed ID: 26416560 [TBL] [Abstract][Full Text] [Related]
37. Pharmacophore-based virtual screening of ZINC database, molecular modeling and designing new derivatives as potential HDAC6 inhibitors. Poonia P; Sharma M; Jha P; Chopra M Mol Divers; 2023 Oct; 27(5):2053-2071. PubMed ID: 36214962 [TBL] [Abstract][Full Text] [Related]
38. Identification of potential inhibitors for HCV NS5b of genotype 4a by combining dynamic simulation, protein-ligand interaction fingerprint, 3D pharmacophore, docking and 3D QSAR. El-Hassab MAE; El-Bastawissy EE; El-Moselhy TF J Biomol Struct Dyn; 2020 Sep; 38(15):4521-4535. PubMed ID: 31647392 [TBL] [Abstract][Full Text] [Related]
39. 3D-QSAR-Based Pharmacophore Modeling, Virtual Screening, and Molecular Dynamics Simulations for the Identification of Spleen Tyrosine Kinase Inhibitors. Kumar V; Parate S; Danishuddin ; Zeb A; Singh P; Lee G; Jung TS; Lee KW; Ha MW Front Cell Infect Microbiol; 2022; 12():909111. PubMed ID: 35846777 [TBL] [Abstract][Full Text] [Related]
40. Pharmacophore-based virtual screening and Roney M; Huq AKMM; Issahaku AR; Soliman MES; Hossain MS; Mustafa AH; Islam MA; Dubey A; Tufail A; Mohd Aluwi MFF; Tajuddin SN J Biomol Struct Dyn; 2023; 41(21):12186-12203. PubMed ID: 36645141 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]