These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38393213)
1. Prediction of Uranium Adsorption Capacity in Radioactive Wastewater Treatment with Biochar. Qu Z; Wang W; He Y Toxics; 2024 Jan; 12(2):. PubMed ID: 38393213 [TBL] [Abstract][Full Text] [Related]
2. Efficacy and mechanisms of δ-MnO Liu Y; Yuan W; Lin W; Yu S; Zhou L; Zeng Q; Wang J; Tao L; Dai Q; Liu J Environ Pollut; 2023 Oct; 335():122262. PubMed ID: 37506804 [TBL] [Abstract][Full Text] [Related]
3. Microbial etch: A novel construction method of functionalized biochar for enhanced uranium extraction in radioactive wastewater. Wang Y; Wu X; Liu X; Cai C; Liang C; Dai L; He X; He R; Liu H; Zhu W Chemosphere; 2024 Aug; 361():142544. PubMed ID: 38844100 [TBL] [Abstract][Full Text] [Related]
4. Bismuth impregnated biochar for efficient uranium removal from solution: Adsorption behavior and interfacial mechanism. Liao J; He X; Zhang Y; Zhu W; Zhang L; He Z Sci Total Environ; 2022 May; 819():153145. PubMed ID: 35038520 [TBL] [Abstract][Full Text] [Related]
5. Preparation of biochar@chitosan-polyethyleneimine for the efficient removal of uranium from water environment. Zhang Y; Mei B; Shen B; Jia L; Liao J; Zhu W Carbohydr Polym; 2023 Jul; 312():120834. PubMed ID: 37059560 [TBL] [Abstract][Full Text] [Related]
6. Prediction of organophosphorus pesticide adsorption by biochar using ensemble learning algorithms. Nighojkar A; Nagpal J; Soboyejo W; Plappally A; Pandey S Environ Monit Assess; 2023 Jul; 195(8):984. PubMed ID: 37486547 [TBL] [Abstract][Full Text] [Related]
7. Efficient removal of uranium from wastewater using pig manure biochar: Understanding adsorption and binding mechanisms. Liao J; Ding L; Zhang Y; Zhu W J Hazard Mater; 2022 Feb; 423(Pt B):127190. PubMed ID: 34844340 [TBL] [Abstract][Full Text] [Related]
8. Facile carboxylation of natural eggshell membrane for highly selective uranium (VI) adsorption from radioactive wastewater. Xuan S; Zhang B; Xiao L; Li G; Zhang Y; Zhang Y; Li J Environ Sci Pollut Res Int; 2021 Sep; 28(33):45134-45143. PubMed ID: 33864215 [TBL] [Abstract][Full Text] [Related]
9. Utilization of Citrullus lanatus L. seeds to synthesize a novel MnFe Ahmed W; Mehmood S; Núñez-Delgado A; Ali S; Qaswar M; Khan ZH; Ying H; Chen DY Sci Total Environ; 2021 Jun; 771():144955. PubMed ID: 33736137 [TBL] [Abstract][Full Text] [Related]
10. "One-can" strategy for the synthesis of hydrothermal biochar modified with phosphate groups and efficient removal of uranium(VI). Chen X; Wang Y; Xia H; Ren Q; Li Y; Xu L; Xie C; Wang Y J Environ Radioact; 2023 Jul; 263():107182. PubMed ID: 37094506 [TBL] [Abstract][Full Text] [Related]
11. One-pot synthesis of brewer's spent grain-supported superabsorbent polymer for highly efficient uranium adsorption from wastewater. Su Y; Wenzel M; Paasch S; Seifert M; Doert T; Brunner E; Weigand JJ Environ Res; 2022 Sep; 212(Pt C):113333. PubMed ID: 35483410 [TBL] [Abstract][Full Text] [Related]
12. An Internet of Things-Oriented Adaptive Mutation PSO-BPNN Algorithm to Assist the Construction of Entrepreneurship Evaluation Models for College Students. Fu H Comput Intell Neurosci; 2021; 2021():3371383. PubMed ID: 34956346 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient U(VI) capture from nuclear wastewater by an easily synthesized lignin-derived biochar: Adsorption performance and mechanism. Guo L; Peng L; Li J; Zhang W; Shi B Environ Res; 2023 Apr; 223():115416. PubMed ID: 36738769 [TBL] [Abstract][Full Text] [Related]
14. Irradiation-stable hydrous titanium oxide-immobilized collagen fibers for uranium removal from radioactive wastewater. Tang Y; Zhou J; Guo J; Liao X; Shi B J Environ Manage; 2021 Apr; 283():112001. PubMed ID: 33497887 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient uranium (VI) capture from aqueous solution by means of a hydroxyapatite-biochar nanocomposite: Adsorption behavior and mechanism. Ahmed W; Núñez-Delgado A; Mehmood S; Ali S; Qaswar M; Shakoor A; Chen DY Environ Res; 2021 Oct; 201():111518. PubMed ID: 34129867 [TBL] [Abstract][Full Text] [Related]
16. Enhancing lead adsorption capacity prediction in biochar: a comparative study of machine learning models and parameter optimization. Liang J; Wu M; Hu Z; Zhao M; Xue Y Environ Sci Pollut Res Int; 2023 Dec; 30(57):120832-120843. PubMed ID: 37945960 [TBL] [Abstract][Full Text] [Related]
17. Predictive modelling and optimization of an airlift bioreactor for selenite removal from wastewater using artificial neural networks and particle swarm optimization. Negi BB; Aliveli M; Behera SK; Das R; Sinharoy A; Rene ER; Pakshirajan K Environ Res; 2023 Feb; 219():115073. PubMed ID: 36535392 [TBL] [Abstract][Full Text] [Related]
18. Information System Security Evaluation Algorithm Based on PSO-BP Neural Network. Zheng Q Comput Intell Neurosci; 2021; 2021():6046757. PubMed ID: 34456994 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of U(VI) removal by biochar derived from Ficus microcarpa aerial root: A comparison between raw and modified biochar. Li N; Yin M; Tsang DCW; Yang S; Liu J; Li X; Song G; Wang J Sci Total Environ; 2019 Dec; 697():134115. PubMed ID: 32380609 [TBL] [Abstract][Full Text] [Related]