These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Real-time amino acid and glucose monitoring system for the automatic control of nutrient feeding in CHO cell culture using Raman spectroscopy. Domján J; Pantea E; Gyürkés M; Madarász L; Kozák D; Farkas A; Horváth B; Benkő Z; Nagy ZK; Marosi G; Hirsch E Biotechnol J; 2022 May; 17(5):e2100395. PubMed ID: 35084785 [TBL] [Abstract][Full Text] [Related]
23. At-line raman spectroscopy and design of experiments for robust monitoring and control of miniature bioreactor cultures. Rowland-Jones RC; Jaques C Biotechnol Prog; 2019 Mar; 35(2):e2740. PubMed ID: 30378770 [TBL] [Abstract][Full Text] [Related]
24. Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. Li B; Ray BH; Leister KJ; Ryder AG Anal Chim Acta; 2013 Sep; 796():84-91. PubMed ID: 24016587 [TBL] [Abstract][Full Text] [Related]
25. A Novel Approach for Non-Invasive Continuous In-Line Control of Perfusion Cell Cultivations by Raman Spectroscopy. Graf A; Lemke J; Schulze M; Soeldner R; Rebner K; Hoehse M; Matuszczyk J Front Bioeng Biotechnol; 2022; 10():719614. PubMed ID: 35547168 [TBL] [Abstract][Full Text] [Related]
26. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Xu S; Gavin J; Jiang R; Chen H Biotechnol Prog; 2017 Jul; 33(4):867-878. PubMed ID: 27977910 [TBL] [Abstract][Full Text] [Related]
27. Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Zhang A; Tsang VL; Moore B; Shen V; Huang YM; Kshirsagar R; Ryll T Biotechnol Bioeng; 2015 Dec; 112(12):2495-504. PubMed ID: 26108810 [TBL] [Abstract][Full Text] [Related]
28. Development of a novel, high-throughput screening tool for efficient perfusion-based cell culture process development. Gagliardi TM; Chelikani R; Yang Y; Tuozzolo G; Yuan H Biotechnol Prog; 2019 Jul; 35(4):e2811. PubMed ID: 30932357 [TBL] [Abstract][Full Text] [Related]
29. Semi-continuous scale-down models for clone and operating parameter screening in perfusion bioreactors. Bielser JM; Domaradzki J; Souquet J; Broly H; Morbidelli M Biotechnol Prog; 2019 May; 35(3):e2790. PubMed ID: 30773840 [TBL] [Abstract][Full Text] [Related]
30. Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media. Lin H; Leighty RW; Godfrey S; Wang SB Biotechnol Prog; 2017 Jul; 33(4):891-901. PubMed ID: 28371394 [TBL] [Abstract][Full Text] [Related]
31. Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis. Berry B; Moretto J; Matthews T; Smelko J; Wiltberger K Biotechnol Prog; 2015; 31(2):566-77. PubMed ID: 25504860 [TBL] [Abstract][Full Text] [Related]
32. A Different Perspective: How Much Innovation Is Really Needed for Monoclonal Antibody Production Using Mammalian Cell Technology? Kelley B; Kiss R; Laird M Adv Biochem Eng Biotechnol; 2018; 165():443-462. PubMed ID: 29721583 [TBL] [Abstract][Full Text] [Related]
33. Repurposing fed-batch media and feeds for highly productive CHO perfusion processes. Kuiper M; Spencer C; Fäldt E; Vuillemez A; Holmes W; Samuelsson T; Gruber D; Castan A Biotechnol Prog; 2019 Jul; 35(4):e2821. PubMed ID: 30985083 [TBL] [Abstract][Full Text] [Related]
34. Soft-sensors application for automated feeding control in high-throughput mammalian cell cultures. Martínez-Monge I; Martínez C; Decker M; Udugama IA; Marín de Mas I; Gernaey KV; Nielsen LK Biotechnol Bioeng; 2022 Apr; 119(4):1077-1090. PubMed ID: 35005786 [TBL] [Abstract][Full Text] [Related]
35. An assessment of the impact of Raman based glucose feedback control on CHO cell bioreactor process development. Gibbons L; Maslanka F; Le N; Magill A; Singh P; Mclaughlin J; Madden F; Hayes R; McCarthy B; Rode C; O'Mahony J; Rea R; O'Mahony-Hartnett C Biotechnol Prog; 2023; 39(5):e3371. PubMed ID: 37365962 [TBL] [Abstract][Full Text] [Related]
36. Process intensification to produce a difficult-to-express therapeutic enzyme by high cell density perfusion or enhanced fed-batch. Särnlund S; Jiang Y; Chotteau V Biotechnol Bioeng; 2021 Sep; 118(9):3533-3544. PubMed ID: 33914903 [TBL] [Abstract][Full Text] [Related]
37. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
38. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables. Clavaud M; Roggo Y; Von Daeniken R; Liebler A; Schwabe JO Talanta; 2013 Jul; 111():28-38. PubMed ID: 23622522 [TBL] [Abstract][Full Text] [Related]
39. Engineering death resistance in CHO cells for improved perfusion culture. MacDonald MA; Nöbel M; Martínez VS; Baker K; Shave E; Gray PP; Mahler S; Munro T; Nielsen LK; Marcellin E MAbs; 2022; 14(1):2083465. PubMed ID: 35737825 [TBL] [Abstract][Full Text] [Related]
40. In-line and real-time prediction of recombinant antibody titer by in situ Raman spectroscopy. André S; Cristau LS; Gaillard S; Devos O; Calvosa É; Duponchel L Anal Chim Acta; 2015 Sep; 892():148-52. PubMed ID: 26388485 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]